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Abstract—Offloading computing and storage to programmable
switches, or in-network acceleration (INA), is a recent wisdom
to speed up distributed applications. Researchers have proposed
a variety of tailored INA solutions for separate applications with
different data-plane layouts and network protocols. However, as
hardware resource of programmable switches is limited, it is hard
to integrate all these INA solutions simultaneously. Consequently,
specialized INA techniques cannot realize full potential on the
cloud, which needs to support various applications and requires
concurrent access by multi-tenants.

To enable on-demand INA service on the cloud, we present
a generic INA framework called INAaaS (INA as a Service). At
its core, INAaaS provides a universal INA interface in network
and offers application-specific adapters on end-hosts. It further
addresses the isolation problem of different applications, and
guarantees the reliability and correctness. Our evaluation shows
that INAaaS effectively improves the performance of various
cloud applications, competing with the specific solutions.

I. INTRODUCTION

Cloud computing services support a wide range of
distributed applications, e.g., distributed machine learning,
MapReduce, and distributed storage. These applications rely
on frequent communication among distributed nodes, which
can generate significant network traffic. As a result, the net-
work can become a bottleneck that limits the performance and
scalability of these applications. Meanwhile, the communica-
tion traffic of these distributed applications puts a strain on the
data center network and hinders other network applications.

To accelerate these applications, an emerging methodology
is to offload operations and functions from end-hosts to
network devices, e.g., programmable switches and smart NICs.
Literature shows that such in-network acceleration (INA)
technique can alleviate end-host overhead while increasing
throughput and reducing latency. Specific INA implementa-
tions have been proposed for many applications, e.g., key-
value stores [14], distributed machine learning [3], distributed
storage [23], lock managers [32], consensus [8] and coordina-
tion [13]. Recent works also pay attention on providing generic
INA for a group of applications, e.g., RPC system [34] and
aggregation for key-value streams [11].

However, the current INA solutions still have some way to
go before they can be directly deployed on the cloud. Specifi-
cally, a cloud INA service needs to address the following three
issues:

• One in-network hardware design for all applications.
INA designs involve programming and configuring on
network devices. Such hardware devices need to be
reset when running a new program, e.g., FPGA and
programmable switch, which may cause several minutes

interruption and impact other network applications [35].
Meanwhile, the resource limitations of switches hinder
the simultaneous deployment of all application programs.
Therefore, to facilitate concurrent operation of different
applications, we need a uniformed INA design. Moreover,
cloud users are not experts in network devices and
transport protocols, we need to conceal the details of INA
and provide users with transparent services.

• Isolation and security among multi-tenants. For cloud
service, network devices are shared by multi-tenants, and
INA applications involve accessing and modifying the
memory in the network. Therefore, our design needs to
consider security and isolation among different tenants.

• INA service delivery and consumption modeling. Cloud
service providers charge customers based on a pay-per-
use or subscription model. For INA services, we need
to design a price model for the scarce network hardware
resources and provide differentiated services.

The challenge of implementing a generic in-network hard-
ware design lies in the limited resources of network devices.
For example, a typical programmable switch [5] has only 12
or 20 stages per pipeline, with each stage containing only 4
ALUs. The entire switch data plane can only provide storage at
the Mega-Bytes level. To address this issue, INAaaS abstracts
the core operations of applications into three categories: 1)
read/query, which allows applications to retrieve previously
stored items; 2) write/store, which enables applications to
record current items; and 3) compute/reduce, which allows
applications to perform computation. We place these core
operations on the programmable switch, and for specific
applications, we leverage these core operations to implement
the corresponding adapters on the end-host, which conceals
the in-network implementation details from tenants.

To ensure isolation in a multi-tenant environment, we assign
a unique identifier (uid) to each tenant. When accessing the
switch memory, the switch logic ensures that a register in use
cannot be accessed or modified by packets from other uids.

We also design an INA delivery and consumption model.
Using in-network storing (register) and computing (ALU)
provided by INAaaS, users can achieve lower latency and
higher application throughput. We model the pricing for the
use of registers and ALUs. We also analyze the relationship
between switch resource usage and the acceleration of latency
and throughput for various applications.

The remaining of the paper is structured as follows. Section
2 provides the background for our work. Section 3 motivates
our work to provide a cloud-based INA solution. In Section



Application Solution Device
DML (dense model) ATP [3] prog. switch
DML (sparse model) Libra [22] prog. switch

reinforcement learning iSwitch [20] FPGA
distributed storage NetEC [23] prog. switch

key-value store NetCache [14] prog. switch
lock managers NetLock [32] prog. switch

consensus system NetPaxos [8] SDN switch
coordination system NetChain [13] prog. switch

network monitor ElasticSketch [30] all

Table I: Taxonomy of in-network accelerated applications.
(prog. switch is short for programmable switch.)

4, we present the design of our proposed system, INAaaS. In
Section 5, we evaluate the performance of INAaaS. Section 7
provides an overview of related work, and we conclude our
paper with a summary in Section 8.

II. BACKGROUND

In this section, we introduce the background of In-Network
Acceleration (INA), cloud service and programmable switch.
We further discuss the motivation for designing a cloud-based
generic INA solution.

A. In-Network Acceleration

Offloading application functions from end-hosts to net-
work devices, or in-network acceleration1 is driven by the
emergence of programmable network devices and the rising
workload of data centers [21], [18], [19], [28]. INA offers
several benefits including 1) lowering the latency for appli-
cation queries, 2) decreasing the volume of traffic within
the network, and 3) reducing the processing burden on end-
servers. Existing work has proposed customized INA solutions
for many applications. Table I lists these applications and the
solutions.

The first three applications are related to Distributed Ma-
chine Learning (DML). The basic acceleration mechanism is
that workers share their model updates (gradients) via the
network, instead of aggregating gradients at the end host,
an aggregation primitive sums the updates in the network
and only distributes the result. Such acceleration is also
called in-network aggregation. The difference among the three
applications is that for the dense model, each worker transmits
all the gradients on each iteration [3]. For the sparse model,
since each iteration has only a small number of gradients
with non-zero values, only some of the values are transmitted
each time and each worker does not necessarily transmit the
same position [22]. For reinforcement learning, it has more
iterations, but with less gradients of each iteration [20].

Distributed storage system [23] leverages erasure code to
to provide fault tolerance and data redundancy. In the event
of a node failure or data loss, the system can reconstruct the
original data from the remaining data. This process creates a
many-to-one aggregation pattern, thus is applicable to INA.

1A lot of work uses the term In-Network Computation (INC). Given that
our scope also includes pure cache applications, in this paper, we use the term
In-Network Acceleration (INA) instead.

Key-value store (KV-store) is commonly used in data cen-
ters to store and retrieve data quickly and efficiently. It is
often used for caching frequently accessed data, storing user
preferences, and managing session data. KV-store is sensitive
to query latency. Recent work [14] uses switch to cache the
data, which achieves high throughput and low latency.

In distributed systems, a lock manager is responsible for
managing locks on shared resources to ensure the consistency
and correctness of operations. Fast acquiring and releasing
lock are crucial to such systems. NetLock [32] builds a
centralized lock manager based on programmable switches.

Paxos is a consensus protocol used in distributed systems
to achieve agreement among a group of nodes on a value or
a sequence of values. NetPaxos [8] moves consensus logic to
SDN switches, which increases the messaging throughput.

Coordination services refer to a set of distributed systems
that provide a way for multiple nodes in a distributed system
to coordinate with each other, i.e., distributed locking, leader
election, and distributed transactions. NetChain [13] leverages
programmable switches to provide scale-free sub-RTT coordi-
nation within the network.

A network monitor captures and analyzes traffic, giving
administrators insight for troubleshooting, security threat iden-
tification, and performance optimization. Elastic Sketch [30]
provides measurement tasks like flow size estimation and
heavy hitter detection on the data plane.

In addition to the customized INA solutions for specific
applications mentioned above, existing works [11], [34], [9],
[35] have also studied providing general INA services for a
class of applications and supporting concurrently tasks.

• Key-Value Streams aggregation, such as reduce in big
data and gradient aggregation in distributed ML, is
supported by ASK [11], which employs a multi-key
packet scheme to enhance goodput and a shadow copy
mechanism to prioritize hot keys protocol-agnostically.

• NetRPC [34] provides software developers with a pre-
built RPC interface that supports in-network computation.
Users can use the INC services through simple configu-
ration file editing at the end-host without the need to
understand low-level chip design details.

• Lyra [9] and ClickINC [29] present a high-level language
and cross-platform compiler to aid in data-plane program-
ming. Lyra offers a one-big-pipeline abstraction, allowing
programmers to express their intent with simple state-
ments instead of focusing on hardware details. ClickINC
further provides a higher-level language compiler.

• NetVRM [35] explores the dynamic register memory
sharing of concurrent applications on the programmable
network. It designs a virtual register memory manage-
ment system that supports dynamic allocation at runtime
without the requirement of reloading and recompiling the
programmable devices.

• As a concurrent work, SwitchVM [16] proposes a
language-level virtualization approach to enable multi-
tenant in-network acceleration, which shares a similar
idea to our work. In comparison, INAaaS focuses more on



aggregation and caching applications, providing simpler
primitives that better suit higher-level applications.

B. Cloud Service

Cloud computing [27] has emerged as a popular computing
paradigm in recent years. It refers to the delivery of com-
puting resources over the internet as a service, where users
can access and utilize computing resources, such as storage,
processing power, and applications, on demand. Cloud services
offer several advantages over traditional computing models,
including lower upfront costs, flexibility, scalability, and high
availability.

Cloud services are categorized into IaaS, PaaS, and SaaS.
IaaS offers virtualized resources like servers and storage for
application deployment. PaaS provides a platform for devel-
opers to build and test applications without managing in-
frastructure. SaaS delivers internet-based software applications
managed by cloud providers.

Cloud services have become ubiquitous in modern com-
puting, with many organizations and individuals using cloud
services to store and process data, run applications, and
host websites. However, the adoption of cloud services also
presents several challenges, including data security, privacy,
and regulatory compliance. As such, it is essential to carefully
consider the risks and benefits of cloud services when deciding
to adopt them.

C. Programmable Switch

The advent of programmable switches [6] allows us to easily
manipulate the data plane, and offload some computing or
monitoring tasks to the network to reduce bandwidth usage
and latency. In order to achieve high packet processing speed
(up to 12.9Tbps [5]), programmable switches use a multi-
stage pipeline architecture, where each stage can process a
fixed number of operations on packets or switch memory, such
as memory access, manipulating packet metadata, arithmetic
operations. There are two types of processing objects in the
switch: stateless objects, such as per-packet metadata, and
stateful objects, such as registers.

Although programmable switches can facilitate many ap-
plications [14], [32], [3], the usage is constrained by three
factors: 1) Limited memory size: Fast memory (e.g., TCAMs,
SRAMs) restricts memory to a few tens of MBs. 2) Limited
actions: They support only a limited set of operations; for
instance, the Tofino switch does not handle floating point
operations. 3) Limited operations per packet: With only tens
of nanoseconds for processing, the number of operations per
packet is restricted, preventing operations like loops.

III. MOTIVATION

A. Providing INA for the cloud

Traditional cloud service use Software-Defined Network-
ing (SDN) to provide programmable network functions, e.g,
network virtualization, centralized network management, and
dynamic bandwidth allocation [17]. While, SDN has limited
data-plane programmability and can not fully support the

latest INA applications listed in §II-A. Compared to SDN,
programmable switches have significant advantages, including
enhanced data processing capabilities, lower data forwarding
latency, and greater flexibility in managing complex network
tasks [6]. These benefits encourage us to apply programmable
switches to provide INA services for cloud environments.

INA can effectively reduce latency and improve throughput,
which are critical for cloud services. However, most existing
INA solutions focus on dedicated clusters and specific appli-
cations. In the cloud scenario, many tenants running multiple
applications currently, and cloud users usually cannot manipu-
late in-network devices, e.g. NICs and switches. Therefore, we
cannot directly apply such solutions to the cloud. To enable
generic INA on the cloud, one strawman solution is to integrate
all dedicate INA solutions and run them simultaneously. How-
ever, network devices have limited programming, computing,
and storage resources, compared to the requirement of each
solutions. Another strawman idea is to set up dedicated racks
or clusters for each application. However, this approach has
two drawbacks, one is to cause the under-utilization of cloud
resources, and the other is that such dedicated racks or clusters
may still have multiple application coexistence scenarios, e.g.,
the distributed ML training includes both computation and
distributed data storage, meanwhile, when running user ap-
plications, the cloud vendors may also perform some network
measurements.

B. Existing Approaches and Limitations

To the best of our knowledge, no work has yet considered
supporting generic INA acceleration in the cloud, while several
solutions [11], [34], [9], [35] have been proposed to sup-
port running multiple applications simultaneously on the in-
network devices, see §II-A. Here we clarify why these efforts
are not sufficient for the cloud.
Need to recompile when workload changes. Several works,
e.g. Lyra [9] and ClickINC [29] provide date plane program-
ming compilers, and they can merge multiple applications into
one program. However, such combination methodology is not
suitable for a dynamic workload. When a new application
starts in the cloud, the network devices need to be recompiled,
which leads to service interruptions. It violates the principle
that different users must not interfere with each other.
Lack of isolation and scheduling among users. Recent work,
e.g., ASK [11] provides a generic INC interface for key-value
pairs and NetRPC [34] designs a remote procedure call for
INC. Both of them support multiple concurrent applications.
However, they ignore security issues, and the register memory
allocation is based on hash mapping, which may lead to a
potential risk of data leakage. Moreover, they do not pay
attention to the scheduling of programmable resources, which
may cause sub-optimal performance on the cloud.
Limited to one single rack or small-scale clusters. Some
of existing work only design for single rack deployment or
is hard to scale out. For example, although NetRPC [34]
can work with multiple switches, it requires to chain the



switches into a longer pipeline in the same rack. For more
complex topology, e.g., fat tree, an application’s traffic may
travel through multiple paths, thus the cloud need a cross-
rack design. Some solutions consider the coordination and
deployment on multiple racks, e.g., Lyra [9] proposes a multi-
ple device deployment algorithm based on SMT (Satisfiability
Modulo Theories). However, this approach is quite slow and
its time complexity is exponential, e.g., a machine learning
aggregation task with only five device costs more than 30
minutes for Lyra to find out a deployment solution.

IV. SYSTEM DESIGN

In this section, we introduce the design of INAaaS. We
first analyze the three challenges of supporting universal in-
network acceleration in cloud scenarios, and provide corre-
sponding solutions. Subsequently, we introduce the packet
format and switch layout of INAaaS, as well as the switch
logic workflow and four basic primitives of INA. Next, we
discuss the reliability mechanisms used to handle issues such
as packet loss and overflow to ensure correctness, as well as
the security design. Finally, we use several common cloud
applications as examples to illustrate the design of the INA
adapter at the end-host, and introduce the pricing model.

A. Design Challenges

Diverse cloud applications vs. limited in-network program-
ming resources. Various type of applications coexisting in the
cloud environment, e.g., KV store, Map reduce and network
measurement. However, the programming and hardware logi-
cal resources of network device are limited. For instance, the
Tofino switch we use only has 12 stages per pipeline, with only
4 stateful ALUs in each stage, and it does not support loop.
Considering the high throughput requirements, the restriction
of in-network hardware logical resources is inevitable.
Numerous cloud applications vs. limited in-network mem-
ory. The multi-tenancy oriented cloud needs to support numer-
ous concurrent tasks with massive storage requirements. Pre-
vious work, NetRPC, divided switch memory into two parts:
one for KV-pair storage and the other for sequential storage.
In the cloud, to improve the utilization of switch memory,
we should unify the storage format and enforce fine-grained
memory scheduling based on the application requirement.
Security, privacy requirements vs. shared in-network stor-
ing and processing. Unlike dedicated data centers, the cloud
provides services and devices to different tenants, therefore,
isolation and security among different users matter. INA appli-
cations involve switch memory access. Existing INA solutions,
e.g., NetRPC and SwitchML, do not take security issues into
account. Their switch memory addressing schemes are based
on simple hashing, which may lead to malicious theft and
tampering of user data.

B. Design Overview

Figure 1 illustrates the methodology of INAaaS. We stream-
line the switch side to just support four primitives, i.e., read,
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Figure 1: Overview of INAaaS

write, reduce and compute, and isolation mechanism. To guar-
antee the correctness, reliability and security, we design a goal-
keeper mechanism on an end-host which is connected to the
switch, the end-host also acts as controller to manage tenants.
For cloud users, we provide application specific adapters for
them to use the INA service transparently. The adapter sends
requests to the generic APIs, which automatically performs
recording and pricing. Here we propose three key ideas to
tackle the three challenges mentioned above.
Switch and end-host co-design. In order to support in-
network acceleration for multiple cloud applications at the
same time, our methodology is to summarize the basic op-
erations, i.e., primitives, used by the applications, and put
these primitives into switches to implement them, and provide
adapters based on these primitives on the end-host side for
each type of application. We found that only four primitives
are needed to support the common applications listed in the
figure, i.e., read, write for switch registers, reduce computation
on the values of multiple packets, and direct computation on
the values of a single packet. We will describe how each
application can be accelerated on the intranet with the help
of the above four primitives. Meanwhile, to handle corner
cases such as packet loss, hash collisions, and preemption,
and considering the limitations of switch logic, we employ
the end-host goalkeeper mechanism to forward and process
these packets.
Harmonizing switch memory format. Considering the
scarcity of switch memory, we adopt a unified switch-side
storage format for all applications, namely in the form of key-
value pairs. To enhance packet storage efficiency, each packet
contains 20 key-value pairs of the same format. This design
also takes into account that a switch pipeline has multiple
stages capable of processing different data simultaneously.
The scheduling and allocation of in-network memory affects
the latency, throughput, and accuracy of applications. We
quantitatively analyze and test the impact of switch memory
on the above metrics in the subsequent sections, which allows
us to provide performance-guaranteed INA services.



Switch memory protection and identity verification. In the
cloud, it may be necessary to give the user access to the entire
end-host, including sending and receiving packets from the
network card. The previous INA scheme has no protection
mechanism for switch memory access, and its commonly
used single hash addressing and checking method based on
application id can be a security risk. Malicious users can read
or modify other users’ data stored in switch memory by hash
collision and tampering with application id. INAaaS provides
dedicated protection for the key-value pairs in switch memory.
Before accessing this data, identity verification is required
to ensure user unique identifier consistency. Even if switch
memory is preempted, we ensure that the old data can be
safely transferred to the endpoint without being accessed by
other users.

C. INA Protocol

Packet format. The packet header of INAaaS includes a 32-
bit timestamp field, a 32-bit time limit field (T), followed
by 20 unique identifier fields (uidi), each 32 bits in length.
Additionally, there are 20 validity fields (validi), each 1
bit, to indicate the validity of the corresponding uidi. The
header also includes 20 read flags (readi), 20 write flags
(writei), and 20 reduce flags (reducei), all of which are 1
bit each, to denote the respective operations. Furthermore,
20 compute flags (computei), each 1 bit, are incorporated to
signify compute operations. An operator field, 4 bits in size,
is included to specify the operation type. Lastly, the header
contains 20 key fields (keyi) and 20 value fields (valuei), each
32 bits in length, to store the key-value pairs being transmitted.

Uid1 Ts1 Uid2 Ts2 Uid3 Ts3 Uid4 Ts4

Uid17 Ts17 Uid18 Ts18 Uid19 Ts19 Uid20 Ts20
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Figure 2: INAaaS switch layout

Switch layout. INAaaS use a unified switch memory structure.
As shown in Figure 2, the first half consists of 20 identically
structured 64-bit registers, each with the first 32 bits repre-
senting the uid and the remaining 32 bits representing the
timestamp. The second half contains 20 corresponding key-
value pairs. The switch processes 4 registers per stage.
Primitives. We have implemented four primitives in the switch
to support in-network acceleration: read, write, reduce, and
compute. The workflow is shown in Algorithm 1. The INAaaS
switch procedure begins by parsing the header of the incoming
packet P. Initially, a bitmap array is initialized to track the
state of 20 registers. In the first stages (2 to 6), the algorithm
checks each register’s validity and timestamp. If the timestamp

has expired or the uid is 0, it swaps the packet’s uid with the
register’s uid and updates the timestamp, then sends the packet
to Goalkeeper. In the subsequent stages (7 to 11), the algorithm
performs uid matching and processes key-value operations
based on the packet’s read, write, reduce, and compute flags. If
the bitmap indicates any changes (failure happens), the packet
is sent to Goalkeeper.

With these primitives, we can support the common cloud
applications listed above. At the same time, the performance
(throughput, latency) of these applications largely depends on
the operations corresponding to these primitives.

• Read. This primitive allows users to read a 64-bit key
and value pair from the switch memory. We will fetch
the corresponding 64 bits from the register array of the
corresponding stage according to the domain index i.

• Write. This primitive allows users to write a 64-bit key
and value pair to the switch memory.

• Reduce. This primitive supports the reduce operation
of multiple workers, i.e., reducing a set of values to
one output, such as gradient aggregation in distributed
machine learning. For the reduce operation, our key is
stored in 16 bits, with the remaining 16 bits used as a
bitmap to record the packet arrival status of each worker
(therefore the maximum supported worker number is 16).

• Compute. This primitive performs stateless calculations
on packet fields, storing results in the value field and
setting the op bit to 15 upon completion. Supported op-
erations include addition, subtraction, bitwise operations
(shift, AND, OR, XOR, NOT), and max/min, with op
field values from 0 to 9.

Switch memory scheduling. The allocation and scheduling
of switch memory affects the performance of various applica-
tions. INAaaS designs the scheduling algorithm based on two
observations.

The first observation is that different applications have
different demands on switch memory. For latency-sensitive
tasks, e.g., KV store and paxos, their performance is directly
related to the hash hit rate, since only hash-hit requests
can enjoy in-network sub-RTT responses, and the size of
the owned memory determines the hash hit rate. Memory
preemption has little impact on such applications and only
affects the query speed of a key. For throughput-sensitive tasks,
such as DML training, allocated switch memory determines
the upper limit of its sending window, which in turn affects
the throughput. Memory preemption has almost no impact on
such applications, except that it divides the reduce result into
multiple packets, which slightly increases network traffic. For
accuracy-sensitive tasks, such as bloom filters, the memory
size determines the accuracy, e.g., false positive rate. A
memory preemption to one of it register may impact all query
results.

The second observation is that due to the straggler phe-
nomenon, map-reduce tasks may waste switch memory. For
example, gradient aggregation will occupy aggregator registers
until the gradient of the last worker arrives. When the network



Algorithm 1: INAaaS Switch Procedure
Input: Packet P
Output: Packet P
parse header of P → hdr;
meta.bitmap[20] := 0;
if hdr.retrans = False then

In stage i (2→6);
j = (i-2)*4, (i-2)*4+1, (i-2)*4+2, (i-2)*4+3;
pass j if hdr.validj = 0;
if hdr.timestamp − reg[hdr.idxj].timestamp > hdr.T or

reg[hdr.idxj].uid = 0 then
swap hdr.uidj and reg[hdr.idxj].uid;
reg[hdr.idxj].timestamp := hdr.timestamp;
meta.uidj := hdr.uidj ;
hdr.readj := 1, hdr.writej := 1;
P.egressPort := the port of Goalkeeper;

else
meta.uidj := reg[hdr.idxj].uid;

In stage i (7→11 );
j = (i-7)*4, (i-7)*4+1, (i-7)*4+2, (i-7)*4+3;
pass j if hdr.validj = 0 or hdr.uid != meta.uidj ;
if hdr.readj = 1 and hdr.writej = 1 then

if reg[hdr.idxj].key = 0 or hdr.key =
reg[hdr.idxj].key then

swap hdr.valuej and reg[hdr.idxj].value ;
swap hdr.keyj and reg[hdr.idxj].key ;

else
meta.bitmap[j] := 1;

if hdr.readj = 1 and hdr.writej = 0 then
· · · ;
hdr.valuej := reg[hdr.idxj].value ;
hdr.keyj := reg[hdr.idxj].key ;
· · · ;

if hdr.readj = 0 and hdr.writej = 1 then
· · · ;
reg[hdr.idxj].value := hdr.valuej ;
reg[hdr.idxj].key := hdr.keyj ;
· · · ;

if hdr.reducej = 1 then
· · · % only compare the first 16bits of key;
reg[hdr.idxj].value := reg[hdr.idxj].value +

hdr.valuej ;
reg[hdr.idxj].key = reg[hdr.idxj].key OR hdr.keyj ;
· · · ;

if hdr.computej = 1 then
· · · ;
hdr.valuej := hdr.op(hdr.valuej , hdr.paraj) ;
· · · ;

else
P.egressPort := the port of Goalkeeper;

if meta.bitmap != 0 then
P.egressPort := the port of Goalkeeper;

deparser;

bandwidth is sufficient, a better choice is to commit the current
aggregation results and release the registers.

Here our scheduling policy is that 1) assign more memory
to hot items of KV store to increase the hash rate, we record
the hot items at the end-host, like NetCache, and store the
hot items twice in different stages. 2) encourage memory

preemption of throughput-sensitive tasks, this can be done by
setting smaller time limit (hdr.T). 3) For the accuracy-sensitive
tasks, we guarantee that its memory will not be seized after it
has been allocated. This can be done by setting the timestamp
to run faster than the normal clock

D. Reliability and Security

Packet loss and host failures. Since our switch is simplified
as much as possible, we use the goalkeeper mechanism on the
end-host to ensure correctness and reliability under packet loss
and retransmissions. For packet loss, since the packet sender
and the goalkeeper are both end-server, we set a timeout to
detect the retransmission. INAaaS tags retransmitted packets
on their header at the end-host, upon a switch receives such
packets, it will forward the packets to the goalkeeper. It has
little impact on the performance because: 1) Retransmissions
account for a very small percentage (usually less than 0.1%)
and 2) We can do selective retransmissions, making the
overhead from retransmissions even lower. Another issue is
isolation. Once a tenant uses the cloud service, the controller
assigns he/she with a uid. When accessing the memory of
switches or goalkeepers, the uid is checked, if it is not the
same, the access will be denied.

Quantization and overflow. The Tofino switch we use does
not support float point operation on the data plane. Current
practice [3], [4] is to apply quantization to change the float
point numbers into integers. Previous experiments show that
this approach does not impact the application performance.
Another issue of computation in programmable switch is
overflow, i.e., exceeding the maximum value that can be
represented in a fixed-size data type during a calculation.
We use the saturating computation of P4 to handle overflow,
when overflow happens, the switch will set the number to a
predefined value MAX INT or MIN INT, then the end-host
will know the overflow happens, we also apply the goalkeeper
mechanism in this case.

Authentication and memory protection. When a switch
receives a packet, it will first determine if it is an INAaaS
packet by the type field in the ethernet protocol, if not, it
will forward it normally. For INAaaS packet, we first get all
the header fields through parser. The next step is to verify
the user’s identity, we read the uid and timestamp from each
of the 20 key-value pair registers. As shown in Algorithm 1,
if the current timestamp has expired (to avoid prolonged
occupation of a register, we set a maximum usage time T,
which varies to the application), we will occupy this key-
value pair register, swap the packet’s corresponding content
with the old content on the switch, and send the packet to
Goalkeeper. This mechanism ensures that when a new task
acquires a register, it does not leak information from the old
task. If the current timestamp has not expired, we proceed
with uid matching. Subsequent read/write operations on the
key-value pair register can only occur if the uid matches or is
0.



E. End-host Adapters

Here, we briefly introduce four application adapters. For KV
store, its INA type is read (query) or write (store), the data
structure is KV pair. The end-host is responsible to record
the hot items and apply duplicate storing to such hot items.
For sparse model aggregation, its INA type is reduce, the data
structure is KV pair. Since the memory in each register group
(totally 20) is separated, we take the key hash and then take the
modulus by 20, dividing the space of all keys into 20 disjoint
subsets. We use 20 queues to cache different subsets of KVs.
When we assemble a packet we select the heads of the 20
queues. For dense model aggregation, its INA type is reduce,
the data structure is array. We set an end-host PS server to
handle all partial aggregation results. For bloom filter, its INA
type is read (query) or write (add) , the data structure is array.
Considering the limitation of switch memory access, we adopt
the idea of shift bloom filter [31], and encode the locations
that multiple hash functions map to multiple 32 bits integer.

F. INA Services Pricing Model

Two factors matter for our pricing model, one is the cost
of providing the INA functions, including the computation
resource ALU and memory resource of the programmable
switch. Another is the value of the INA to users, including
the potential reduction in application latency and increase
in throughput. For calculating switch resource occupation,
it’s important to note that each time a user occupies a new
switch register, a packet is sent to the Goalkeeper server (see
Algorithm 1). Additionally, when a register is released, the
Goalkeeper is also notified. This enables us to accurately
track each user’s resource usage. Potential acceleration is
determined by measuring the throughput and latency metrics
of specific tasks.

Correspondingly, INAaaS provides two types of INA ser-
vices pricing. The first is a pay-per-use model. We record
the number of times a user’s application uses the ALU
resources on a programmable switch, and the number of switch
registers it occupies multiplied by the duration. The second
is a subscription based model. Considering the contention of
the INA resources, the user experience may be affected, e.g.,
cannot guarantee a consistent low latency. To provide cloud
users QoS (Quality of Service), we give subscribed user higher
priority on accessing switch resources.

V. IMPLEMENTATION

We implement INAaaS switch logic on a 12-stage pro-
grammable switch. The INAaaS switch pipeline contains 20
read-write memory segments corresponding to the 20 key-
value pairs in the INAaaS packet. Each memory segment
contains 40k 64-bit units to restore INC states or the INC
map. Depending on the service configuration, we set the packet
length to 300 bytes. Note that typically programmable switches
have four pipelines. The current design only uses one pipeline.
In our future research, we plan to fully utilize all pipelines to
increase packet length. We implemented the end-host adapter
for each application using C++. Additionally, we provide users

with four switch primitives to facilitate the development of
their own applications. To prevent users from tampering with
the uid, the packet assembly component of INAaaS is not
exposed to the tenant environment but is completed by the
cloud service provider. In switch side, we used a technique
where the 64-bit register in the Tofino switch is divided into
high and low parts, allowing for simultaneous read and write
operations, and provides two conditional logics. We combined
the uid and timestamp together, enabling accurate monitoring
of the usage time of a specific uid. Additionally, we combined
the key and value together as a key-value pair for simultaneous
read and write operations.

VI. EVALUATION

We evaluate INAaaS with a combination of testbed vali-
dation and simulation measurement. The principal discoveries
from our evaluation are as follows:

• Testbed results show that INAaaS nearly achieves the
same level of acceleration as the SOTA in-network ac-
celeration scheme for several popular applications, and
INAaaS can support many concurrent applications.

• As a complement to testbed, simulation shows that with
more servers under a rack, INAaaS is still effective.

• Deep dive experiments show the improvement of INAaaS
scheduling algorithm on key metrics of different appli-
cations. Meanwhile, we further show that INAaaS can
quickly find the attacker without affecting normal users.

A. Testbed

Setup. Our testbed contains one AS9516-32D programmable
switch and ten servers, five of them are GPU servers, each
with two V100 GPUs, 40 CPU cores (Intel Xeon Gold 5115),
128GB memory, two Mellanox ConnectX5 100Gbps NICs.
The other servers are CPU servers, each has 24 CPU cores,
64GB memory and one ConnectX5 NIC. The switch has
100Gbps links connecting to each NIC of the above servers.
To scale up our testbed, we further divide one GPU server
into two separated docker containers, each with 1× GPU, 20×
CPU cores, 64GB memory and a 100Gbps NIC.
Speedup on different applications. Here we evaluate the
performance of INAaaS on four widely-used cloud appli-
cations, i.e., distributed ML, KV store, paxos and bloom
filter. For distributed ML, we measure the end-to-end training
speed of the image classification task. We compare INAaaS
with ATP and non in-network acceleration baseline. The
implementation is based on BytePS [12], a state-of-the-art
machine learning framework. We use all GPU servers and
test five popular models, i.e., Alexnet, ResNet50, ResNet101,
VGG16 and VGG19. As we can see from Figure 3(a), INAaaS
outperforms the baseline and is comparable to ATP on all
models. The speedup on ResNet models are tiny, since they
have negligible communication compared to computation. For
KV store, we show the average latency vs. throughput curve
of INAaaS, NetCache and the no in-network cache baseline.
We use the same application setup in NetCache. Figure 3(b)
shows that INAaaS achieves the similar speedup as NetCache



Baseline
INAaaS
ATP

Tr
ai

ni
ng

 S
pe

ed
 (i

m
ag

es
/s

)

0

100

200

300

400

500

Alexnet
ResNet50

ResNet101
VGG16

VGG19

(a) Distributed ML

Baseline
INAaaS
NetCache

La
te

nc
y 

(u
s)

0

10

20

30

Throughput (BQPS)
0 0.5 1.0 1.5 2.0

(b) KV Store

La
te

nc
y 

(u
s)

0

100

200

300

400

500

Libpaxos INAaaS P4xos

(c) Paxos

La
te

nc
y 

(u
s)

0

10

20

30

40

50

Baseline INAaaS Switch

(d) Bloom Filter

Figure 3: Speedup on different applications.

Application 1× 2× 4×
Distributed ML (throughput) 1.45 1.45 1.44
KV store (average latency) 1.74 1.72 1.71

Paxos (tail latency) 2.75 2.75 2.75
Bloom filter (aver. latency) 3.83 3.83 3.83

Table II: The speedup of INAaaS with concurrent applications.

and can also increase the upper bound saturated throughput.
Note that the baseline throughput saturates at 0.26 BQPS.
For the Paxos consensus system, we compare the tail latency
(99th-percentile) of INAaaS with P4xos and libpaxos [1]. We
measure the time cost to make one consensus. Figure 3(c)
shows that INAaaS successfully cuts the tail latency compared
to the server-base solution and the performance is close to the
specific INA design. For the network measurement tools bloom
filter, we show the average respond latency of a query. We
implement classical bloom filter in both switch and end-host.
All solutions have the same memory usage. From Figure 3(d)
we can see that INAaaS achieve the same speedup as the
switch based solution. Such INAaaS implement a variant of
bloom filter, we also measure the false positive rate, INAaaS
also show the same rate, i.e., 2.4%.
Speedup on concurrent applications. Here we emulate the
cloud environment with multiple concurrent applications of
different users. We run four type of applications concurrently,
i.e., distributed ML with VGG16, KV store, Paxos and bloom
filter. We compare INAaaS with the end-host based baseline.
To show the impact of the number of applications, we show the
speedup of run 1×, 2× and 4× instances of each application.
Table II shows the results. The conclusions are 1) INAaaS
achieves similarly speedup in the shared environment as the
exclusive one. 2) Increasing of instances number does not
mitigate the performance improvement.

B. Simulation

Topologies: We set up a single switch topology, which has one
switch with 48 100Gbps links to 48 hosts, and one 100Gbps
links to the controller host. For each experiment, we set the
number of servers under each rack as 12, 24, 36 and 48,
respectively. We assume the switch data-plane memory size
is 10MB. The packet size is 300Bytes.
Workload: For DML, we simulate the traffic pattern of pa-
rameter server in one iteration. We assume there are only one
PS server, as the setting in ATP [3]. Here we chose two ML
models. The first is ResNet50, each worker generates 96MB
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data in one iteration. The second is VGG16 with 512MB.
For key-value store, We assume the ratio of client to service
is 5:1 and evaluate two workloads, i.e., uniform and skewed
(zipf-0.95) [14], For distributed storage, we test two cases,
replication and RS(3,2) [23]. The SSD write speed is 2 Gbps.
Distributed Machine learning. Here we compare the com-
munication throughput of INAaaS with ATP [3] and vanilla,
i.e., baseline without INA on DML. Figure 4 shows the
INA performance on DML. Y-axis indicates the gradient
aggregation throughput, and X-axis indicates the total number
of workers. We can see that with the number of workers
increase the baseline is almost consistent, while INAaaS and
ATP increase linearly. This indicate that INA successfully
address the downlink bottleneck by aggregating gradients in
the network and for DML, INAaaS performs INA correctly.
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Figure 6: Distributed Storage



Application INAaaS FCFS FQ
Distributed ML (throughput) 1.45 1.22 1.25
KV store (average latency) 1.72 1.31 1.37

Paxos (tail latency) 2.75 2.59 1.78
Bloom filter (ave. latency) 3.83 3.64 1.93

Table III: The speedup of INAaaS with concurrent applica-
tions.

Key-Value Store. Here we compare the throughput (billion
query per second) with NetCache [14] and vanilla on key-
value store. Figure 5 shows the case of key-value store. For
the uniform workload, the three algorithms are almost the
same, which is in line with the finding in NetCache [14]. For
the skewed workload, i.e., zipf distribution with the parameter
equal to 0.95, the INA solutions significantly out-performs the
baseline and INAaaS is close to the SOTA.
Distributed Storage. Here we compare the traffic volume
with NetEC [23] and vanilla on distributed storage. Figure 6
shows the results of network traffic volume generated by
reconstruction. In both two cases, we can find that the INA
solutions significantly reduce traffic volumes, which helps to
mitigate the network pressure.

C. Deep Dive

[simulation] Speedup from switch memory scheduling. Due
to the scarcity of switch memory, INAaaS uses a fine-grained
scheduling algorithm. Here we verify the effectiveness of the
algorithm. We first chose two baseline scheduling, i.e., FCFS
(First Come First Serve) and fair queuing. We run four type
of applications concurrently, each with 2× instance. Table III
shows the speedup of each scheduler compared to the end-
host based solutions. We can see that INAaaS outperform
the two baseline in all cases, especially on the KV store and
bloom filter. The reason are that INAaaS schedules the switch
memory based on the demand of application, the cache rate of
KV store directly impact the performance, thus it gets more
memory in INAaaS. Bloom filter has static and persistent
memory demand, thus INAaaS allocation less but persistent
memory to it.
[Testbed] Impact of malicious switch memory access.
INAaaS prevent access to switch memory by malicious users
by checking the application key stored in packet header, if the
key mismatches, INAaaS will forward the packet to a specific
server and logs it. When the accumulate counting of a user
over a period of time exceeds a threshold, we mark it as a
malicious user. We simulate the attaching behave of users by
filling in random value as the application key. Result show that
INAaaS can find out the malicious user immediately before
they have chance to access switch memory.
[Testbed] Impact of packet loss. Packet loss may happen
in the cloud, especially when the network load is heavy. Here
we measure the impact of packet loss on two applications, i.e.,
distributed ML training on VGG16 and query on KV store.
For the KV store, we fix the query throughput to be 0.1 BQPS
and measure the average latency. As shown in Figure 7, when
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Figure 7: Impact of packet loss.

the packet loss rate is less than 0.1%, there are almost no
performance degradation of INAaaS.

VII. RELATED WORK

Compiler for Data Plane ASIC Programming. Existing
programming on data plane ASIC are coded in low-level
languages, e.g., P4 [7] and NPL [2], which creates barriers
for users. To aids the programmers, µP4 [26] enables modular
programming in the data plane of PISA switches through the
composition of reusable libraries. For programmable switching
chips architectures, e.g., RMT and FlexPipe, work [15] designs
the compiler for P4 programs. Domino [25] extends the Banzai
machine model to support a wide range of data plane algo-
rithms, including stateful packet processing. Chipmunk [10]
leverages slicing to optimize Domino’s compilation time and
resource usage. Lyra [9] introduces a chip-level details inde-
pendent new language to enable data plane programming over
multiple switches.
Virtualization for P4 Data Planes. Virtualization enables
multiple P4 programs to share underlying resources efficiently.
Approaches like Hyper4 and HyperVDP [33] implement P4
data plane virtualization by introducing a hypervisor P4 pro-
gram. P4VBox [24] facilitates parallel execution of virtual
switch instances and supports hot-swapping these instances
at runtime. However, these methods are primarily for simple
network function virtualization and hard to handle complex
in-network acceleration tasks like caching and aggregation.

VIII. CONCLUSTION

In this paper, we propose a generic INA framework called
INAaaS to provide on demand INA service for the cloud. IN-
AaaS propose one in-network hardware design for all applica-
tions based on programmable switches. It further addresses the
isolation and security among different cloud users and deploys
a INA service pricing model. We expect that INAaaS will
accelerate the development of next-generation cloud services
and unlock the potential of in-network computing.
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