
Scaling Switch-driven Flow Control with Aquarius
Wenxue Li, Chaoliang Zeng, Jinbin Hu, Kai Chen

∗

iSing Lab, Hong Kong University of Science and Technology

ABSTRACT
As datacenter networks support more diverse applications and

faster link speeds, effective end-to-end congestion control becomes

increasingly challenging due to the inherent feedback delay. To

address this issue, switch-driven per-hop flow control (FC) has

gained popularity due to its natural flow isolation, timely control

loop, and ability to handle transient congestion. However, the ideal

FC requires impractical hardware resources, and the state-of-the-art

approximation approach still demands a large number of queues

that exceeds common switch capabilities, limiting scalability in

practice.

In this paper, we propose Aquarius, a scalable solution for per-

hop FC that maintains satisfactory flow isolation with a practical

number of queues. The key idea of Aquarius is to take independent

control of different flows within the same queue, discarding the

traditional practice of managing traffic collectively within the same

queue. At its core, Aquarius applies a contribution-aware pausing

mechanism on congested switches to enable individual control de-

cisions for arriving flows, and uses an opportunistic re-assigning

strategy on upstream switches to further isolate congested and

victim flows. Experimental results demonstrate that Aquarius main-

tains comparable performance with 4× fewer queues, and achieves

5.5× lower flow completion times using the same number of queues,

compared to existing solutions.

CCS CONCEPTS
• Networks→ Transport protocols.

KEYWORDS
Datacenter Networks, Per-hop Flow Control

ACM Reference Format:
Wenxue Li, Chaoliang Zeng, Jinbin Hu, Kai Chen. 2023. Scaling Switch-

driven Flow Control with Aquarius. In 7th Asia-Pacific Workshop on Net-
working (APNET 2023), June 29–30, 2023, Hong Kong, China. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3600061.3600066

1 INTRODUCTION
Nowadays, datacenters are supporting an increasingly diverse range

of applications, such as distributed computing, enterprise services,

∗
Kai Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

APNET 2023, June 29–30, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0782-7/23/06. . . $15.00

https://doi.org/10.1145/3600061.3600066

cloud storage, serverless computation, and large-scale data anal-

ysis [6, 7, 17, 18, 26]. These applications impose strict demands

on network communications, requiring the underlying network

fabric to simultaneously support their individual needs, such as

high throughput, low latency, effective isolation between different

services, and stable network quality delivery. Congestion control

(CC) plays a critical role in supporting effective communications.

Current datacenter networks (DCNs) mainly rely on complicated

end-to-end CC mechanisms that utilize end-to-end congestion sig-

nals to adjust the sending rate, while using simple first-in-first-out

(FIFO) queues at switches. Examples of end-to-end CC include

DCTCP [3], DCQCN [32], Timely [20], Swift [15], and HPCC [19].

However, as DCN link speed continues to increase and applica-

tion traffic becomes more bursty and harder to predict, end-to-end

CC finds it challenging to remain effective (§2.1). First, it is difficult

to control short flows in a timely manner. End-to-end congestion

signals lose control of flows that finish within a single network

round-trip time (RTT), and the proportion of these flows is growing

with increasing link speed. Second, it is challenging to maintain

stable throughput for large flows. Datacenter traffic bursts can

cause non-negligible fluctuations even in sub-RTT timescales [1, 2].

End-to-end signals are stale by at least one RTT, and thus the end-

point reaction based on this stale information cannot handle the

fast-emerging new network environment.

Because of the inherent drawbacks of end-to-end CC, a recent

line of work tries to explore switch-driven control with a timely

reaction to congestion [8, 27]. Among them, the switch-driven per-

hop flow control (FC)
1
becomes attractive because of its natural

flow isolation, timely control loop, and ability to handle transient

congestion, which are promising features in orchestrating today’s

high-speed DCNs. However, the ideal switch-driven FC [16] re-

quires the switch to allocate an exclusive queue for each flow, which

is impractical.

BFC [8] is the state-of-the-art solution to approximate the ideal

FC. It alleviates the requirement for switch resources by only con-

trolling active flows that have queued packets in the switch buffer.

Specifically, BFC assigns an exclusive queue to each active flow

if possible, and multiple flows will share a queue if there are no

free queues. However, BFC still requires a large number of physical

queues that exceed common switch capability. As a result, BFC’s

performance will get a significant degradation when deployed in

common switches with a limited number of queues (§2.2).
Based on the above observations, we ask: can we push the switch-

driven FC one step further towards practicality by making it feasible
with a limited number of queues that is much less than the number
of active flows? It requires the solution must maintain satisfactory

flow-level isolation even when multiple flows share the same queue.

In this paper, we provide a cautiously optimistic answer via

Aquarius, a scalable solution of switch-driven per-hop FC that main-

tains satisfactory flow isolation with a practical number of queues

1
In the rest of the paper, we refer to per-hop flow control as flow control for short.

https://doi.org/10.1145/3600061.3600066
https://doi.org/10.1145/3600061.3600066

APNET 2023, June 29–30, 2023, Hong Kong, China W. Li, et al.

(§3). At a high level, Aquarius departs from the traditional prac-

tice of collectively managing the overall traffic within the same

queue and instead aims to take independent and precise control

of different flows that are within the same queue. To achieve this,

Aquarius primarily applies two mechanisms: contribution-aware
pausing on the congested switch and opportunistic re-assigning on

the corresponding upstream switches.

When a new active flow (i.e., without any previously buffered

packets) arrives at a switch, Aquarius dynamically allocates an

empty queue if possible or the least-utilized queue for it. When

the length of an egress queue exceeds a given threshold indicating

possible congestion, Aquarius applies contribution-aware pausing
to differentiate multiple flows within this queue and sends PAUSE

messages only to the congestion-responsible flow’s upstream queue.

Aquarius determines responsible flows based on their buffer usages,

total egress queue length, and expected fair occupation.

Uncongested flows continue to arrive at the congested switch and

can cause a severe buffer overflow in extreme cases. To minimize

this issue, we set two pausing thresholds:𝑄ℎ𝑖𝑔ℎ and𝑄𝑙𝑜𝑤 . When the

queue length exceeds𝑄𝑙𝑜𝑤 , and there is a possibility of congestion,

Aquarius only pauses the congestion-responsible flows. When the

queue length exceeds the conservative threshold 𝑄ℎ𝑖𝑔ℎ , all flows

passing through the congested queue are paused to prevent severe

buffer overflow.

When the upstream switch receives a PAUSE message, if the to-

be-paused congested flow solely occupies a queue, Aquarius pauses

that queue from outputting packets. Otherwise, if the congested

flow shares a queue with other uncongested flows (i.e., victim flows),

Aquarius performs opportunistic re-assigning where Aquarius di-

rects the subsequent packets of the congested flow to a dynamically

reserved separating queue, which isolates congested and victim

flows further. Meanwhile, Aquarius allows the original queue to

continue transmitting, ensuring that the victim flows remain unaf-

fected.

We have implemented Aquarius in the NS-3 simulator [22]. Our

preliminary simulations demonstrate that Aquarius outperforms

previous schemes significantly (§4). For instance, Aquarius ensures
high throughput for uncongested and victim flows under a typical

micro-benchmark. Besides, under the realistic Web Server traffic,

Aquarius maintains comparable performance with 4× fewer queues

and reduces the average FCT by 5.5× and 99
𝑡ℎ

percentile tail FCT

by 5× using the same number of queues, compared with BFC.

2 BACKGROUND & MOTIVATION
2.1 Insufficiencies of End-to-End CC
Datacenter networks are experiencing several trends that make it

increasingly challenging to attain satisfactory performance with

end-to-end CC protocols.

1 Higher link speeds lead to an increase in the number of
flows that can complete within a single RTT. As datacenter
link speeds grow rapidly from tens to hundreds of Gigabytes per

second, more flows become "smaller" and can finish within a single

RTT. To explicitly show this trend, we analyze four production

datacenter workloads: Web Search [3], Web Server [24], Facebook
Hadoop [24] andAlibaba Storage [19]. Wemeasure three link speeds

and calculate their bandwidth-delay products (BDPs), assuming a

10Gbps 40Gbps 100Gbps

Pe
rc

en
ta

ge

0%

50%

100%

Worload
Web Server Ali Storage Web Search FB Hadoop

Figure 1: Percentage of flows that finish in a single RTT in
four workloads and three link speeds.

12𝜇s RTT, and then treat flows with sizes smaller than the BDP as

capable of finishing in a single RTT. Fig. 1 shows the percentage of

such flows. The results indicate that, as link speeds increase, more

flows can finish within a single RTT, and up to 90% of flows can

complete (in theory) under today’s 100Gbps bandwidth.

End-to-end CC protocols mainly rely on receiver-echoed signals

(e.g., ECN [3], RTT [20], loss [9], multi-bits INT [19], etc.) to adjust

sending rates. Consequently, the sender requires at least one RTT

to receive feedback and loses control of flows that can complete

within the first RTT. The sender either blindly starts these flows at

a high rate and risks congestion or starts them at a low rate and

leads to network under-utilization [11].

2 Bursty traffic leads to significant fluctuations in sub-RTT
timescales. As datacenter networks support more diverse ap-

plications, such as frontend query traffic and backend storage

streams [14], the traffic becomes increasingly bursty due to the

mixture of short and large flows along with the growing link

speeds [1, 2]. Large flows can experience rapidly emerging and

disappearing cross-traffic bursts, resulting in non-negligible net-

work fluctuations even in sub-RTT timescales (i.e., sub-RTT level

fluctuations). BFC [8] demonstrates that when a large flow com-

petes with cross-traffic on a single link, the fair-sharing rate of this

large flow can experience up to 60% mean change in less than an

RTT.

End-to-end CC is unable to handle these sub-RTT level fluctua-

tions and thus fails to maintain stable throughput for large flows.

This is because end-to-end signals rely on stale information by at

least one RTT, while the network condition can change dramati-

cally over a short period. Therefore, the endpoint reaction based

on this stale information cannot adapt to the fast-emerging new

network environment.

2.2 Existing Flow Control is Not Scalable
2.2.1 Ideal FC is Impractical. The ideal implementation of per-hop

FC [16] assigns a dedicated physical queue and maintains states for

every flow, including inactive flows that have no packets queued at

the switch. The ideal FC has the following merits: (1) Timely control:
a congested switch can directly regulate the upstream entity based

on its buffer condition. Thus, it can reduce congestion or increase

utilization within 1-Hop RTT (usually 1-2𝜇s) instead of end-to-end

RTT. Because of this, it can handle the transient congestion that

is caused by sudden bursts in sub-RTT timescales; (2) Flow isola-
tion: individual flows are queued in separating queues and thus can

be adjusted independently without any inter-flow interferences.

Scaling Switch-driven Flow Control with Aquarius APNET 2023, June 29–30, 2023, Hong Kong, China
FC

T
of

 s
ho

rt
flo

w
s

(u
s)

0

50

100

150

BFC-8 BFC-32

(a) Average

FC
T

of
 s

ho
rt

flo
w

s
(u

s)
0

200

400

600

800

BFC-8 BFC-32

(b) 99𝑡ℎ percentile

FC
T

of
 la

rg
e

flo
w

s
(m

s)

0

0.2

0.4

0.6

0.8

BFC-8 BFC-32

(c) Average

Figure 2: FCT of BFC underWeb Server distribution with 70%
load and 5% 100-1 incast.

Despite being promising, current switch capabilities cannot accom-

modate the physical queues demanded by ideal FC, rendering them

impractical.

2.2.2 Scalability Issues Persist in BFC. BFC [8] is currently consid-

ered the leading approximation of the ideal FC that can be imple-

mented in today’s programmable switches. BFC assigns a dedicated

queue to each active flow, with multiple flows sharing a queue when

there are no available queues.

BFC requires more physical queues than the common switch
can accommodate. Even though BFC removes the necessity for

per-flow queues, it still requires dedicated physical queues to reg-

ulate each active flow. The original implementation of BFC uses

32-128 queues per port, which is considerably more than the avail-

able number of queues in most practical switches. Firstly, only

state-of-the-art programmable switches [13] can support such a

high number of queues per port, while typical switches are usually

equipped with 8 queues or fewer. Secondly, physical queues are es-

sential resources that are typically reserved for strong physical iso-

lation between different tenants. Therefore, it is impractical to use

all queues for intra-tenant traffic [29]. Consequently, an effective

FC solution must consider this limitation and deliver satisfactory

performance with a practical number of queues.

We conduct a simulation to demonstrate the performance of

BFC in 32 (i.e., BFC-32, as in the original paper) and 8 queues (i.e.,
BFC-8) per port. We use the Web Server [24] workload with a 70%

average load and 5% incast traffic and a fat-tree topology (details in

§4). The results indicate that BFC-8 gets a significant degradation
with about 7.6× higher average (Fig. 2a) and 6× higher tail (Fig. 2b)

FCT for short flows, and has a 20% higher average FCT for large

flows (Fig. 2c), compared with BFC-32. Note that the transmitting

capacity per port is the same for both 8 and 32 queues, and thus the

degradation in FCTs results from the severe interference between

flows within the same queue.

3 DESIGN
3.1 Design Overview
Aquarius eliminates the traditional requirement for multiple sep-

arating queues by making an effort to control different flows in-

dependently that are mapped to the same queue. Consequently,

Aquarius can maintain satisfactory flow isolation even with a min-

imal number of queues that is much less than the number of active

flows. The overall architecture of Aquarius consists of three phases:

(1) dynamic flow mapping on every switch passed by to allow un-

congested flows to pass quickly, (2) contribution-aware pausing on

Algorithm 1 Enqueueing and Contribution-aware Pausing

Inputs:
𝑄𝑙𝑜𝑤 , 𝑄ℎ𝑖𝑔ℎ : two queue length thresholds

𝑇𝑚𝑖𝑛 , 𝑇 , 𝑇𝑎𝑣𝑔 : minimum, current, and averaged arriving inter-

vals between adjacent packets

𝑂𝑐𝑐𝑢𝑓 𝑎𝑖𝑟 : size of fair flow occupation

1: function Enqeue(packet)

2: key = <packet.egressPort, hash(packet.FID)>

// Assign queue for new active flow
3: if flowTable[key].size == 0 then
4: flowTable[key].mappedQ = min

𝑄.𝑙𝑒𝑛𝑔𝑡ℎ
{𝑄 | 𝑄 ∈

𝑝𝑎𝑐𝑘𝑒𝑡 .𝑒𝑔𝑟𝑒𝑠𝑠𝑃𝑜𝑟𝑡}
5: packet.q = flowTable[key].mappedQ

6: flowTable[key].size += 1

// Make pausing decision
7: if packet.q.length > 𝑄ℎ𝑖𝑔ℎ then
8: flowTable[key].pauseNum += 1

9: packet.congested = true ⊲ Congestion flag
10: else if packet.q.length > 𝑄𝑙𝑜𝑤 & 𝑇𝑎𝑣𝑔 < 𝑇𝑚𝑖𝑛 then

// Contribution-aware pausing
11: if flowTable[key].size > 𝑂𝑐𝑐𝑢𝑓 𝑎𝑖𝑟 then
12: flowTable[key].pauseNum += 1

13: packet.congested = true

14: 𝑇𝑎𝑣𝑔 = 𝛼 ∗𝑇 + (1 − 𝛼) ∗𝑇𝑎𝑣𝑔 ⊲ Update 𝑇𝑎𝑣𝑔
15: if flowTable[key].pauseNum == 1 then

// Pause upstream entity
16: send PAUSE(packet.upstreamQ, packet.FID)

the congested switch to precisely control flows responsible for con-

gestion (i.e., congested flows), and (3) opportunistic re-assigning on

upstream switches to further isolate congested and victim flows.

We will introduce each of them one by one.

Dynamic flow mapping. Aquarius maintains a FlowTable that

records states, e.g., the mapped queue (mappedQ), the number

of queued packets (size), etc., for active flows that have packets
buffered on the switch. Aquarius uses the five tuples of source and

destination address, port, and IP protocol as flow identifier (FID),

and uses the combination of the flow’s egress port and the hash of

FID to index the table entry. Algorithm 1 illustrates the enqueueing

logic. Aquarius regards a new active flow (i.e., without previous
packets buffered on the switch) as un-congested and dynamically

allocates an empty queue if possible or assigns it the queue with the

least length (Line 3). Aquarius maps the packets of existing flows to

the same queue to ensure in-order delivery (Line 5). The underlying

design principle is to enable uncongested flows to pass quickly.

3.2 Contribution-aware Pausing
We show the architecture comparison between ideal FC, BFC, and

Aquarius in Fig. 3. There are four flows (𝑓1 ∼ 𝑓4) with different

arriving rates passing the congested switch and 𝑓4 sharing an up-

stream egress port with 𝑓5. Ideal FC allocates an exclusive queue

for each flow, and thus 𝑓1 ∼ 𝑓5 are controlled independently, i.e.,
the congestion-responsible 𝑓1 and 𝑓4 are paused and 𝑓2, 𝑓3 and 𝑓5

APNET 2023, June 29–30, 2023, Hong Kong, China W. Li, et al.

Congested
Switch Egress Port

Queue
threshold

Congested
Switch Egress Port

Queue
threshold

Congested
Egress Port

Flow Table
> Fair
< Fair

... ...

(a) Ideal FC (b) BFC (c) Aquarius

Up-
stream

Down-
stream

Figure 3: Architecture comparison between ideal FC, BFC, and Aquarius. BFC unnecessarily pauses uncongested and victim
flows. Aquarius precisely pauses the real congestion-responsible flows while leaving other flows unaffected, consequently
approximating the ideal FC’s behavior.

are unaffected, as shown in Fig. 3(a). We make a challenging set-

ting for BFC and Aquarius by assuming there is only one available

queue on the congested egress port
2
. Additionally, 𝑓5 is occasionally

mapped to the same queue as 𝑓4 on the upstream switch, as shown

in Fig. 3(b). As BFC controls traffic within a queue as a whole, all

flows (𝑓1 ∼ 𝑓5) are paused, resulting in unfair degradation to 𝑓2, 𝑓3,

and 𝑓5.

By contrast, Aquarius employs contribution-aware pausing to

mimic the ideal FC’s behavior by allowing independent and precise

control of various flows. To achieve this, Aquarius records the size

of each flow and checks if it exceeds the fair occupation (𝑂𝑐𝑐𝑢𝑓 𝑎𝑖𝑟)

of the egress queue (Line 11). When a flow exceeds this fair occupa-

tion, it is responsible for the congestion and should be paused. As

depicted in Fig. 3(c), Aquarius pauses flows 𝑓1 and 𝑓4 while allowing

flows 𝑓2 and 𝑓3 to continue uninterrupted. To calculate 𝑂𝑐𝑐𝑢𝑓 𝑎𝑖𝑟 ,

Aquarius applies a hardware-friendly shifting operation:

𝑂𝑐𝑐𝑢𝑓 𝑎𝑖𝑟 = ⌈𝐿 >> ⌈log
2
𝑁 ⌉⌉, (1)

where 𝐿 is the egress queue length and 𝑁 is the number of active

flows on this queue. 𝑂𝑐𝑐𝑢𝑓 𝑎𝑖𝑟 denotes the equitable allocation of

queue capacity among all active flows. In cases where the number

of active flows is not a power of two, 𝑂𝑐𝑐𝑢𝑓 𝑎𝑖𝑟 is rounded up to

prevent the under-regulation of flows.

Pause thresholds. Aquarius allows uncongested flows and a small

portion of congested flow (detail in §3.3) to continue transmit-

ting. Thus, two queue length thresholds, 𝑄𝑙𝑜𝑤 and 𝑄ℎ𝑖𝑔ℎ , are set

to prevent the downstream congested queue from becoming over-

whelmed. When queue length 𝐿 exceeds𝑄𝑙𝑜𝑤 but is less than𝑄ℎ𝑖𝑔ℎ ,

and there is a possibility of congestion (Line 10), Aquarius will only

pause the flow that is responsible for congestion. When 𝐿 exceeds

the conservatively large 𝑄ℎ𝑖𝑔ℎ , Aquarius will pause all upstream

flows to avoid severe buffer overflow (Line 7).

To determine whether congestion is possible, we use a time

window𝑇𝑚𝑖𝑛 . If the current arriving interval𝑇𝑎𝑣𝑔 is less than𝑇𝑚𝑖𝑛 ,

Aquarius determines that congestion will likely happen. We use

the iteratively updated averaged 𝑇𝑎𝑣𝑔 instead of 𝑇 to reduce the

interferential noise (Line 14).𝑇𝑚𝑖𝑛 is given by
𝑀𝑇𝑈 ∗𝑁𝑄𝑎𝑐𝑡𝑖𝑣𝑒

𝜇 , where

2
This setting is common on congested switches because congestion is usually caused

by the sudden appearance of a large number of flows, which results in more flows

than available queues, and multiple flows are inevitably mapped to the same queue.

MTU is the maximum packet length, 𝜇 is the output capacity of

the port, and 𝑁𝑄𝑎𝑐𝑡𝑖𝑣𝑒 is the number of queues that are not paused

in the port. We set 𝑄𝑙𝑜𝑤 and 𝑄ℎ𝑖𝑔ℎ as
𝐻𝑅𝑇𝑇 ∗𝜇
𝑁𝑄𝑎𝑐𝑡𝑖𝑣𝑒

and
3∗𝐻𝑅𝑇𝑇 ∗𝜇
𝑁𝑄𝑎𝑐𝑡𝑖𝑣𝑒

,

respectively, where 𝐻𝑅𝑇𝑇 is the 1-Hop RTT. A pre-configured

match-action table indexed with 𝑁𝑄𝑎𝑐𝑡𝑖𝑣𝑒 and 𝜇 can be used to

compute these values.

3.3 Opportunistic Re-assigning
As depicted in Figure 3, both flows 𝑓4 and 𝑓5 are initially mapped

to the same upstream egress queue in BFC and Aquarius. How-

ever, BFC controls flows within the same queue as a whole, thus

causing both 𝑓4 and 𝑓5 to be paused together, which results in un-

fair degradation to 𝑓5. In contrast, Aquarius employs opportunistic
re-assigning to further isolate 𝑓4 and 𝑓5, allowing 𝑓5 to continue

transmitting.

To be specific, the PAUSE message includes the QueueID and

FID of the flow to be paused (𝑓𝑇𝐵𝑃). Upon receiving the PAUSE

message, the upstream switch first checks:

• If 𝑓𝑇𝐵𝑃 solely occupies a queue: Aquarius pauses this queue.

• If 𝑓𝑇𝐵𝑃 is sharing a queuewith other un-congested flows: Aquarius

directs the subsequent packets of 𝑓𝑇𝐵𝑃 to a queue that is reserved

to hold congested flows (rsvQ), and pauses rsvQ. Meanwhile,

Aquarius allows the original queue to continue transmitting, thus

leaving the un-congested flows unaffected.

Aquarius determines the queue’s state using a QueueTable that

records the number of flows mapped to each queue, FIDs of con-

gested flows notified by downstream entities, etc.
The rsvQ can be dynamically allocated or statically configured.

We adopt dynamic allocation in §4, where rsvQ is dynamically

selected from empty queues when it is needed and has not been

allocated. All congested flows share the same rsvQ. When rsvQ
becomes empty, it is released to the initial dynamic flow mapping.
The downstream switch notifies upstream switches with a RESUME

message after its congestion is reduced, as shown in Algorithm 2.

When all RESUME messages of the assigned congested flows are

received, and the previously buffered packets are drained totally

(to ensure in-order delivery), rsvQ is resumed.

Further optimization. To prevent victim flows from being blocked,

the original queue must continue transmitting. The already buffered

Scaling Switch-driven Flow Control with Aquarius APNET 2023, June 29–30, 2023, Hong Kong, China

Algorithm 2 Dequeueing Logics of Aquarius

1: function Deqeue(packet)

2: key = <packet.egressPort, hash(packet.FID)>

3: flowTable[key].size -= 1

4: if packet.congested == true then
5: flowTable[key].pauseNum -= 1

6: if flowTable[key].pauseNum == 0 then
// Resume upstream entity

7: send RESUME(packet.q, packet.FID)

packets of 𝑓𝑇𝐵𝑃 (congested) are forced to arrive at the downstream

switch because they are not allowed to re-enter the ingress pipeline

in today’s programmable switches. Therefore, a small portion of

𝑓𝑇𝐵𝑃 is not paused, as shown in Figure 3(c). On switches that sup-

port multiple egress pipelines [30], we can direct the buffered pack-

ets to a separating next-level egress queue, achieving complete

control over congested flows. This approach provides additional

optimization for managing congested flows.

4 PRELIMINARY RESULT
WeperformNS-3 simulations to evaluate the performance of Aquarius

under both micro-benchmark and realistic traffic loads.We compare

Aquarius with BFC [8].

Micro-benchmark. To validate the effectiveness of Aquarius,

we simulate a typical micro-benchmark. The simulation setup is

illustrated in Fig. 4, where flows 𝑓1 ∼ 𝑓3 are directed to 𝑅1, while

𝑓4 goes to 𝑅2. All links in the network have a capacity of 100Gbps

and a propagation delay of 1𝜇s. We limit the transmission rate of 𝑓1
to 1/3 line rate (33Gbps) and allow 𝑓2 to 𝑓4 to transmit at line rate

(100Gbps). Consequently, 𝑅1 becomes the bottleneck because its

input rate significantly exceeds the link capacity, causing a queue

buildup on its connected 𝐿1 port. We limit 𝑓1 ∼ 𝑓3 to the same

egress queue on 𝐿1, and initially map 𝑓3 and 𝑓4 to the same egress

queue on 𝐿2, while all switches have 8 queues per port.

We measure the average throughput of flows 𝑓1 to 𝑓4 and com-

pared Aquarius with BFC. BFC manages flows within the same

queue as a whole and pauses 𝑓1 and 𝑓2 too frequently and for too

long. Because 𝑓3 and 𝑓4 share the same queue, BFC inevitably pauses

𝑓4. As a result, BFC causes throughput degradation to 𝑓1, 𝑓2, and

𝑓4, as shown in Fig. 5(b). In contrast, Aquarius achieves a relatively

fair partition of bottleneck link capacity between 𝑓1 to 𝑓3, despite

their different transmission rates. This is because Aquarius deter-

mines that 𝑓2 contributes the most to the congestion and proac-

tively pauses it for a longer time than 𝑓1 and 𝑓3. Moreover, when the

PAUSE message is propagated to 𝐿2, Aquarius further isolates 𝑓3 to

a separating queue and only pauses 𝑓3, ensuring the throughput of

𝑓4 is not affected.

Realistic Web Server traffic. We simulate a 3-layer fat-tree topol-

ogy comprising 48 switches and 128 servers, with a 1:1 oversub-

scription ratio. All links are equipped with 100Gbps capacity and

have a propagation delay of 1𝜇s. The switch applies Equal-Cost

Multi-Path (ECMP) as load balancing and has a 12MB total buffer.

We use a syntheticWeb Server workload with a 70% average load, as

well as 5% load 100-to-1 incast traffic with sizes ranging from 50KB

L1L2

Figure 4: Micro-benchmark setting.

Av
er

ag
e

th
ro

ug
hp

ut
 (G

bp
s)

0

20

40

60

f1 f2 f3 f4

(a) Aquarius

Av
er

ag
e

th
ro

ug
hp

ut
 (G

bp
s)

0

20

40

60

f1 f2 f3 f4

(b) BFC

Figure 5: Average throughput for flows 𝑓1 ∼ 𝑓4.

to 200KB. Aquarius is configured with 8 queues per port and com-

pared with BFC-8 and BFC-32. Both 8- and 32-queue configurations

have the same transmitting capacity per port.

We measure the average and 99
𝑡ℎ

percentile tail FCT of short

flows (< 3KB), and average FCT of large flows (> 1MB). The results

depicted in Fig.6 demonstrate that Aquarius significantly reduces

FCT compared to BFC-8 and is comparable to BFC-32. For instance,

compared to BFC-8, Aquarius achieves approximately 5.5× lower

average (Fig. 6a) and 5× lower 99
𝑡ℎ

percentile tail (Fig. 6b) FCT

for short flows. Additionally, Aquarius attains a 15% faster comple-

tion time for large flows (Fig. 6c). Compared to BFC-32, Aquarius

achieves comparable FCT for both short and large flows, with 4×
fewer queues. This performance advantage of Aquarius stems from

the ability to independently and accurately control the congested

flows, reducing the interference to uncongested flows.

5 DISCUSSION & FUTUREWORK
Efficient flow table structure. Aquarius maintains flow states (i.e.
FlowTable) using an array without collision resolution, similar to

BFC. While using an array has the advantage of simple operations,

the size of the FlowTable must be set to several hundred times the

number of flows to limit the hash collision probability. This results

in inefficient utilization of FlowTable entries, leading to nontrivial

state overhead. To overcome this limitation, we plan to explore

more hash table structures with effective collision resolution and

constant computation overhead as part of our future work.

Further analysis and hardware feasibility. We plan to conduct

additional experiments to gain a deeper understanding of Aquarius.

This includes investigating its sensitivity to parameters, evaluating

the performance impact of using the dynamically- vs. statically-
allocated reserved queue, and determining the probability of an

upstream switch having available queues. Furthermore, we will

implement Aquarius on commodity programmable switches and

measure the hardware resource overhead of Aquarius to estimate

its hardware feasibility and packet processing capability.

APNET 2023, June 29–30, 2023, Hong Kong, China W. Li, et al.
FC

T
of

 s
ho

rt
flo

w
s

(u
s)

0

50

100

150

BFC-8
BFC-32

Aquarius

(a) Average

FC
T

of
 s

ho
rt

flo
w

s
(u

s)
0

200

400

600

800

BFC-8
BFC-32

Aquarius

(b) 99𝑡ℎ percentile

FC
T

of
 la

rg
e

flo
w

s
(m

s)

0

0.2

0.4

0.6

0.8

BFC-8
BFC-32

Aquarius

(c) Average

Figure 6: Average and 99
𝑡ℎ percentile tail FCT for short flows,

and average FCT for large flows, under Web Server distribu-
tion with 70% load and 5% 100-1 incast.

6 RELATEDWORK
Priority-based flow control (PFC). PFC [23] is an Ethernet net-

work protocol used to ensure lossless data transmission. However,

PFC is known to have several drawbacks, including head-of-line

(HOL) blocking, unfairness, congestion spreading, and deadlock.

There are numerous works have attempted to eliminate PFC’s draw-

backs [12, 28, 31, 32]. While PFC enables different traffic to be

buffered in separating queues, the mapping between traffic and

queues is mostly statically configured using constant packet tags.

In contrast, Aquarius dynamically maps flows to available queues

and opportunistically isolates flows as necessary, providing a more

flexible and efficient solution.

Queue scheduling and switch buffer management. Some

works propose various queue scheduling methods to address the

negative impact of large flows on the latency of short flows. Ex-

amples include fair queuing approximation [25] and priority-based

scheduling [4]. Additionally, switch buffermanagement schemes [2]

utilize various switch buffer characteristics to determine the admis-

sion threshold for each queue. These methods alone cannot reduce

buffer occupancy and are orthogonal to Aquarius.

Proactive congestion control. A famous line of works [5, 10,

11, 21] has adopted a proactive congestion control scheme where

receivers allocate credits to senders in advance of data transmission.

However, receivers can only perceive congestion at the network’s

edges and cannot feel and proactively control congestion within

the network. In contrast, Aquarius utilizes switches, which have

a full understanding of both in-network and edge congestion, to

make accurate and timely control decisions.

7 CONCLUSION
In this paper, we introduce Aquarius, a scalable solution for en-

hancing switch-driven flow control and making it more practi-

cal. Aquarius takes independent control of different flows that are

mapped to the same queue, thereby achieving satisfactory flow-

level isolation with a number of queues that is much less than the

number of flows. Experimental results demonstrate that Aquarius

effectively achieves fair partitioning in bottleneck flows and signif-

icantly reduces the tail FCT for short flows under realistic work-

loads.

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their insightful comments.

This work is supported in part by the Key-Area Research and De-

velopment Program of Guangdong Province (2021B0101400001),

the Hong Kong RGC TRS T41-603/20R, and the GRF 16213621.

REFERENCES
[1] Sepehr Abdous, Erfan Sharafzadeh, and Soudeh Ghorbani. 2021. Burst-tolerant

datacenter networks with vertigo. In Proceedings of the 17th International Confer-
ence on emerging Networking EXperiments and Technologies. 1–15.

[2] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid, and Laurent

Vanbever. 2022. ABM: active buffer management in datacenters. In Proceedings
of the ACM SIGCOMM 2022 Conference. 36–52.

[3] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data

center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 Conference. 63–74.
[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,

Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-

center transport. ACM SIGCOMM Computer Communication Review 43, 4 (2013),

435–446.

[5] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-scheduled delay-bounded

congestion control for datacenters. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. 239–252.

[6] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,

Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. 2010.

The YouTube video recommendation system. In Proceedings of the fourth ACM
conference on Recommender systems. 293–296.

[7] Google. 2023. Google Cloud Platform. https://cloud.google.com

[8] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mohammad Al-

izadeh, and Thomas E. Anderson. 2022. Backpressure Flow Control. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
USENIX Association, Renton, WA, 779–805. https://www.usenix.org/conference/

nsdi22/presentation/goyal

[9] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly

high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),

64–74.

[10] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W

Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter

networks and stacks for low latency and high performance. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. 29–42.

[11] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai Chen,

Kun Tan, and Yi Wang. 2020. Aeolus: A building block for proactive transport in

datacenters. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication. 422–434.

[12] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra Padhye,

and Kai Chen. 2017. Tagger: Practical PFC deadlock prevention in data center net-

works. In Proceedings of the 13th International Conference on emerging Networking
EXperiments and Technologies. 451–463.

[13] Intel. 2023. Intel Tofino 2. https://www.intel.com/content/www/us/en/products/

network-io/programmable-ethernet-switch/tofino-2-series.html

[14] Lin Jin, Shuai Hao, Haining Wang, and Chase Cotton. 2019. Unveil the hidden

presence: Characterizing the backend interface of content delivery networks. In

2019 IEEE 27th International Conference on Network Protocols (ICNP). IEEE, 1–11.
[15] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian Wu,

Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,

Michael Ryan, et al. 2020. Swift: Delay is simple and effective for congestion

control in the datacenter. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 514–528.

[16] NT Kung and Robert Morris. 1995. Credit-based flow control for ATM networks.

IEEE network 9, 2 (1995), 40–48.

[17] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. 2014. Communication

efficient distributed machine learning with the parameter server. Advances in
Neural Information Processing Systems 27 (2014).

[18] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. 2015. Coded

mapreduce. In 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton). IEEE, 964–971.

[19] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:

High precision congestion control. In Proceedings of the ACM Special Interest
Group on Data Communication. 44–58.

[20] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,

Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.

2015. TIMELY: RTT-based congestion control for the datacenter. ACM SIGCOMM

https://cloud.google.com
https://www.usenix.org/conference/nsdi22/presentation/goyal
https://www.usenix.org/conference/nsdi22/presentation/goyal
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html

Scaling Switch-driven Flow Control with Aquarius APNET 2023, June 29–30, 2023, Hong Kong, China

Computer Communication Review 45, 4 (2015), 537–550.

[21] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.

Homa: A receiver-driven low-latency transport protocol using network priorities.

In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. 221–235.

[22] NS-3. 2023. A discrete-event network simulator for internet systems. https:

//www.nsnam.org/

[23] IEEE 802.1 Qbb. 2011. Priority-based Flow Control. https://1.ieee802.org/dcb/802-

1qbb/

[24] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.

2015. Inside the social network’s (datacenter) network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. 123–137.

[25] Naveen Kr Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.

Approximating fair queueing on reconfigurable switches. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18). 1–16.

[26] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, MohammedDanish Shaikh,

Shivaram Venkataraman, and Aditya Akella. 2021. Atoll: A scalable low-latency

serverless platform. In Proceedings of the ACM Symposium on Cloud Computing.
138–152.

[27] Parvin Taheri, Danushka Menikkumbura, Erico Vanini, Sonia Fahmy, Patrick

Eugster, and Tom Edsall. 2020. RoCC: robust congestion control for RDMA. In Pro-
ceedings of the 16th International Conference on emerging Networking EXperiments
and Technologies. 17–30.

[28] Chen Tian, Bo Li, Liulan Qin, Jiaqi Zheng, Jie Yang, Wei Wang, Guihai Chen, and

Wanchun Dou. 2020. P-PFC: Reducing tail latency with predictive PFC in lossless

data center networks. IEEE Transactions on Parallel and Distributed Systems 31, 6
(2020), 1447–1459.

[29] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun, Vladimir Braverman,

Mosharaf Chowdhury, Zhenhua Liu, and Xin Jin. 2021. Programmable packet

scheduling with a single queue. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference. 179–193.

[30] Zhuolong Yu, Jingfeng Wu, Vladimir Braverman, Ion Stoica, and Xin Jin. 2021.

Twenty Years After: Hierarchical Core-Stateless Fair Queueing.. In NSDI. 29–45.
[31] Yiran Zhang, Yifan Liu, Qingkai Meng, and Fengyuan Ren. 2021. Congestion

detection in lossless networks. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference. 370–383.

[32] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and

Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

https://www.nsnam.org/
https://www.nsnam.org/
https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Insufficiencies of End-to-End CC
	2.2 Existing Flow Control is Not Scalable

	3 Design
	3.1 Design Overview
	3.2 Contribution-aware Pausing
	3.3 Opportunistic Re-assigning

	4 Preliminary Result
	5 Discussion & Future Work
	6 Related Work
	7 Conclusion
	References

