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Abstract— The state-of-the-art datacenter load balancing
designs commonly optimize bisection bandwidth with homoge-
neous switching granularity. Their performances surprisingly
degrade under mixed traffic containing both short and long
flows. Specifically, the short flows suffer from long-tailed delay,
while the throughputs of long flows also degrade dramatically
due to low link utilization and packet reordering. To solve
these problems, we design a traffic-aware load balancing (TLB)
scheme to adaptively adjust the switching granularity of long
flows according to the load strength of short ones. Under the
heavy load of short flows, the long flows use large switching
granularity to help short ones obtain more opportunities in
choosing short queues to complete quickly. On the contrary,
the long flows reroute flexibly with small switching granularity to
achieve high throughput. Furthermore, under extremely bursty
scenario, we utilize the packet slicing scheme for long flows
to release bandwidth for short ones. The experimental results
of NS2 simulation and testbed implementation show that TLB
significantly reduces the average flow completion time of short
flows by 16%-67% over the state-of-the-art load balancers and
achieves the high throughput for long flows. Moreover, for
extreme bursty case, at the acceptable throughput degradation of
long flows, TLB with packet slicing reduces the deadline missing
ratio of bursty short flows by up to 80%.

Index Terms— Data center, load balancing, multipath.

I. INTRODUCTION

MODERN data centers deploy the multi-rooted tree
networks such as Fat-tree and Clos to provide high

bisection bandwidth via multiple paths between any given
pair of hosts [1]–[4]. To meet the increasing traffic demands
of latency-sensitive and throughput-oriented applications, how
to efficiently balance traffic across available multiple paths
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becomes a crucially important issue in large-scale data center
networks (DCNs).

As the defacto load balancing scheme, ECMP (Equal
Cost Multipath) [5] is widely deployed in data centers to
randomly map each flow to one of the paths by using flow
hashing. ECMP is very simple but suffers from well-known
performance problems such as hash collisions and the inability
to reroute flow adaptively. Recently, a lot of better load
balancing designs have emerged in DCNs. Random Packet
Spraying (RPS) [6], DRILL [3] and Hermes [2] split flows
at the granularity of packet and choose the next hop for each
packet to leverage multiple paths. Presto [8] picks paths for
fixed-sized chunks of data (i.e., 64KB) to boost throughput
and reduce packet reordering. CONGA [1] and LetFlow [9]
adopt flowlet switching to provide a finer granularity without
causing much packet reordering.

However, prior load balancing designs reroute all flows
at a certain granularity, either flow, flowlet, flowcell or
packet, regardless of the flow sizes. They are agnostic to
the heterogeneous traffic feature that the mixed short and
long flows are generated by large-scale applications such as
web search, social networking and retailing system in data
centers [10], [11]. In general, the datacenter heterogeneous
traffic can be characterized by heavy-tailed distribution from a
macro perspective [12]–[14]. That is, around 80% of traffic is
provided by only about 20% throughput-sensitive long flows,
and about 80% of delay-sensitive short flows provide only
about 20% of traffic [12]–[14].

As a result, when the short and long flows are rerouted
at the same granularity, the short flows easily experience
long-tailed queueing delay since they are difficult to seize
the less-congested paths under the overwhelming data of
long flows, resulting in large flow completion time (FCT).
Moreover, under the non-adaptive granularity, the long flows
suffer from the throughput loss due to the low link utilization
or out-of-order problem when the network traffic changes
dynamically [15], [16].

In this paper, we present a new load balancing scheme TLB,
which differentiates the switching granularity for different
types of flows to achieve low latency for short flows and high
throughput for long flows. When the traffic load of short flows
is high, the long flows are rerouted at the large granularity to
leave more less-congested paths for short flows. In contrast,
under the low load of short flows, the long flows are switched
at the small granularity to improve the link utilization. The
short flows pick paths on packet-level to flexibly seize the
fast paths. TLB successfully splits heterogeneous traffic across
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multiple paths to avoid the long-tailed queueing delay for short
flows, improve the link utilization for long flows and reduce
packet reordering.

In summary, our major contributions are:
• We conduct an extensive simulation-based study to

explore the issues of mixed heterogeneous flows rerouted
at the same and non-adaptive granularity in typical load
balancing designs: the short ones experience long-tailed
queueing delay and out-of-order problem, and the long
ones suffer from the low link utilization and packet
reordering.

• We propose a load balancing scheme TLB, which flexibly
reroutes short and long flows at different granularities by
perceiving the traffic load. Specifically, TLB adaptively
adjusts the switching granularity for long flows according
to the load strength of short flows and picks paths for
short flows at packet-level to achieve low queueing delay
for short flows and high link utilization for long ones.

• To protect short flows under extremely bursty scenario,
we utilize the packet slicing scheme to adjust the packet
size of long flows. We theoretically analyze the effec-
tiveness of packet slicing and show that the packet slicing
scheme greatly reduces the deadline missing ratio of short
flows.

• By using both NS2 simulations and testbed implemen-
tation, we demonstrate that TLB performs remarkably
better than the state-of-the-art load balancing schemes.
Specifically, TLB greatly reduces the AFCT by ∼16%-
67% for short flows under heavy workload. Meanwhile,
TLB yields up to ∼35% and ∼49% throughput improve-
ment for long flows over Presto and LetFlow, respectively.

The rest of the paper is organized as follows. In Section II
and III, we describe our design motivation and overview,
respectively. In Section IV, we give the model analysis of TLB.
We discuss the implementation in Section V. In Section VI
and VII, we show the test results of NS2 simulation and
testbed experiment, respectively. We present the related works
in Section VIII and conclude the paper in Section IX. The
appendixes provide supplementary experiments under realistic
workloads and P4 software switch.

II. MOTIVATION

A. Load Balancing With the Same Granularity

The existing load balancing designs typically use one of
the three switching granularities, flow-level, flowlet-level, and
packet-level. In the flow-level schemes, each flow is transferred
on one path without flexible switching. The flowlet-level
schemes reroute flows only when the flowlets emerge. The
packet-level schemes choose path for each packet to make
full use of multiple paths, but easily cause serious packet
reordering under the topology asymmetry.

Case Study: We use a simple example to illustrate the issues
of typical load balancing schemes. Fig. 1 shows that 3 senders
(S1, S2, S3) and 3 receivers (R1, R2, R3) connect to the
corresponding leaf switches. There are 3 queues (Q1, Q2, Q3)
on the corresponding output ports of the leaf switch L1. S1

continuously sends a long flow to R1 at time T1, while S2

and S3 respectively send a short flow to R2 and R3 at time
T2 and T3. We use four different granularities to reroute flows
at the leaf switch L1.

Fig. 1. Leaf-spine topology.

Fig. 2. Queueing under different granularities.

Fig. 2 shows that the packets of short and long flows are
queued based on the flow, packet, flowlet and ideal switching
granularity, respectively. Fig. 2 (a) shows that, under the
flow-level switching, one short flow is queued behind the
long flow in Q1 though Q3 is empty, resulting in the large
queueing delay and low link utilization. The packet-based
switching is shown in Fig. 2 (b). Although all packets of
short and long flows are evenly spread among multiple
paths, there exist reordering packets and large queueing delay
experienced by short flows. Fig. 2 (c) shows the case of
flowlet-based switching. Three flows are always transmitted
in their respective queues due to insufficient inactivity gap.
The inflexible switching unavoidably leads to the low link
utilization. The ideal case is shown in Fig. 2 (d). At the
beginning, the switching granularity of the long flow and the
short ones are 3 and 1, respectively. The long flow is rerouted
at its 4th packet to leave the less-congested paths for the short
flows, which flexibly pick the short queues of Q2 and Q3 per
packet to avoid the large queueing delay. When the short flows
are finished, the long flow decreases the switching granularity
to packet to improve its throughput.

B. Impact of Switching Granularity

We conduct NS2 simulation test to analyze the impact of
switching granularity on the short and long flows. We use
a leaf-spine topology with 15 equal-cost paths between host
pairs. The bottleneck bandwidth is 1Gbps and the round-trip
propagation delay is 100μs. The switch buffer size is 256 pack-
ets. Each sender sends a DCTCP [12] flow to a receiver via the
leaf and spine switches. We set the ECN marking threshold
to 128 packets in our simulations. In our test, the mixture
of 100 short flows with random size of less than 100KB and
5 long flows larger than 10MB are generated in heavy-tailed
distribution. The flowlet timeout is 150μs [2].

We test the impact of switching granularity on short
flows. We compare the cumulative density function (CDF) of
queueing length experienced by each packet of short flows
under three granularities. As shown in Fig. 3 (a), with the
increasing of switching granularity, the queue length becomes
larger. Moreover, due to the growing queue length caused by

Authorized licensed use limited to: Central South University. Downloaded on July 05,2021 at 07:00:00 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: ADJUSTING SWITCHING GRANULARITY OF LOAD BALANCING 3

Fig. 3. The impact on short and long flows.

long flows, the difference of queue lengths under flow-level
switching is large. For flow-level granularity, all short and
long flows are hashed to 15 paths, meaning that the long
flows only occupy up to 30% of the total paths (i.e., 5 paths).
Therefore, the majority of short flows do not collide with the
long ones. The bursty short flows that share paths with long
ones are likely to experience the queue length of ECN marking
threshold, while the queue lengths of the other short flows are
less than the ECN marking threshold.

Fig. 3 (b) shows the ratio of TCP duplicate ACKs to demon-
strate the packet reordering. Compared with the flow-level and
flowlet-level switching, the number of duplicate ACKs is quite
large under the packet-level switching, causing the spurious
packet loss. When the number of duplicate ACKs reaches the
retransmission threshold, the TCP sender cuts the congestion
window. Fig. 3 (c) shows the CDF of flow completion time.
We observe that the tailed delay increases with the increasing
of switching granularity due to the larger difference of queue
lengths. Moreover, though obtaining the smallest queue length,
the packet-level switching scheme still does not achieve the
best performance of FCT because of its packet reordering
problem.

Next, we examine the impact on long flows. Fig. 3 (d) shows
that, since the long flows provide the overwhelming amount
of data in data centers, the load balancing with large granu-
larity (i.e., flow-level) causes low link utilization. As shown
in Fig. 3 (e), though splitting the traffic of long flows in a more
balanced way, the flow switching with smaller granularity
introduces more out-of-order packets. Fig. 3 (f) shows that,
due to the dilemma between the link utilization and packet
reordering, long flows only obtain the average throughput of
less than 35% of the network capacity.

Fig. 4. Queueing process.

Fig. 5. TLB architecture.

C. Summary

Our analysis of the impact of load balancing with same
switching granularity on the network performance leads us to
conclude that (i) the short flows experience the large queueing
delay as the granularity increases and have more reordering
packets as the granularity decreases, (ii) the long flows suffer
from the throughput degradation due to the non-adaptive
granularity in rerouting flows. These conclusions motivate us
to design and implement a traffic-aware load balancing scheme
with adaptive granularity to achieve good performance for both
short and long flows.

III. DESIGN OVERVIEW

In this section, we present an overview of TLB. The key
point of TLB is to adaptively adjust the switching granularity
of long flows and flexibly pick path for each packet of
short flows to alleviate the large queueing delay and packet
reordering. Specifically, on the one hand, the long flows are
switched dynamically with adaptive granularity based on the
load strength of short flows, leaving more less-congested paths
for short flows. On the other hand, each packet of the short
flows is routed on the shortest queue to avoid being blocked
by long flows.

Fig. 4 shows the queueing process with adaptive switching
granularity for short and long flows. The long flow is dynami-
cally rerouted across multiple paths to achieve high throughput
and simultaneously reduce the queueing delay for short flows.
At the beginning, the long flow occupies the Queue1 with
large switching granularity, leaving non-congested Queue2

and Queue3 for the short flows with the packet-level switching
granularity. As soon as the arrival rate of short flows decreases,
the long flow is rerouted to Queue2 and Queue3 with smaller
granularity to flexibly make use of multiple paths. In contrast,
under the high load of short flows, the switching granularity
of the long flow adaptively increases after being rerouted to
Queue3. Therefore, the short flows are able to efficiently and
quickly transmit each packet on the paths unused by the long
flow. Fig. 5 shows the architecture of TLB.
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1) Granularity Calculator: At the switch, the granularity
calculator consists of two parts: load strength estimation and
granularity computation. Firstly, the load strength of short
flows is estimated according to their arrival rates, and then the
switching granularity of long flows is calculated to guarantee
the low queueing delay for short flows.

Specifically, when the traffic load of short flows is heavy,
the switching granularity of long flows should be larger to
ensure that the short flows have more opportunities to use
enough non-congested queues to avoid large queueing delay.
Conversely, with the decrease of the load strength of short
flows, the switching granularity of long flows should be
smaller to switch flexibly among the multiple paths to improve
link utilization. At each time interval t (500μs by default [1]),
the granularity computation module updates the switching
granularity periodically. The most important work is adjusting
the switching granularity of long flows to achieve the good
tradeoff between small flow completion time of short flows
and high throughput of long flows.

2) Forwarding Manager: The forwarding manager is
responsible for switching the short and long flows with differ-
ent granularities and selecting the forwarding path according
to the real-time queue lengths of the output ports.

For a long flow, when a new packet arrives at the switch,
TLB reroutes the packet to the shortest queue only if the
current queue length of the long flow reaches the switching
threshold calculated by the granularity computation module.
Otherwise, TLB forwards the new arriving packet to the
same queue as the last arrival packet in the same flow. For
short flows, TLB reroutes each arriving packet to the output
port with shortest queue length to reduce queueing delay
caused by the long flows. In high-speed data center networks,
to reduce the packet processing overhead, TLB chooses the
shortest queue as the forwarding port for short-flow packets
in a time-driven manner. That is, TLB periodically updates
the minimum queue length every base RTT and forwards the
arrival packets of short flows to the port with the shortest
queue length.

IV. ADAPTIVE SWITCHING GRANULARITY

A. Model Analysis

The goal of this paper is to develop a simple load balancing
scheme that meets the requirements of both short and long
flows. The primary goal of short flows is reducing their aver-
age flow completion time to meet their deadlines [17], [18],
while the long flows require large throughputs. In our design,
the switching granularity is elaborately adjusted to firstly meet
the delay requirements (i.e., deadline) of short flows and then
leave as much resources as possible for long flows to improve
their throughputs. To achieve the design goal, we use the
queueing model to calculate the optimal switching granularity
as follows.

However, the datacenter traffic is very bursty and unpre-
dictable at short timescales (e.g., 10∼100s of microsec-
onds) [1], leading to the varying distribution of flow size
from a micro viewpoint. For example, during the distributed
training process of machine learning, a large number of model
parameters are updated synchronously between thousands of
servers at the end of each iteration [19]. In web search
application, the massive responses are generated concurrently

among servers to aggregators, incurring bursty transient traf-
fic [12]. Specifically, the bursty traffic of short flows in these
applications shows ON/OFF mode [14]. The bursty short flows
start and finish their transmissions during the ON periods,
which are much shorter than the OFF periods. The number
of bursty short flows varies in each ON period. During the
ON periods of short flows, the long flows are always existing
since they have much larger flow size.

In general, the number of short and long flows varies with
traffic pattern. TLB periodically updates the number of short
and long flows at switches to capture traffic patterns that chang
over time. If none packet is received during the sampling
interval, which is set to 500μs as same as the updated interval
of switching granularity of long flows [1], the corresponding
flow record is removed from the flow table. Based on the
number of short flows under different traffic patterns, TLB
calculates the arrival rate and load strength of short flows.
Then TLB dynamically adjusts the switching granularity of
long flows according to the load strength of short flows. The
theoretical relation between switching granularity and traffic
pattern is as follows.

Let n denote the number of all equal-cost paths, which
includes nS and nL paths allocated by TLB for mS short flows
and mL long flows, respectively. We use C and RTT to denote
the bottleneck link capacity and the round-trip propagation
delay, respectively. The long flows continuously send packets
with the maximum window size WL limited by the receiver
buffer (64KB by default in Linux) [20] after quickly entering
the congestion avoidance phase.

We assume that mS short flows with average size of X bytes
are transmitted over nS paths with an average completion time
of FCTS . The arrival rate λ of the short flows following a
Poisson distribution is calculated as

λ =
mS · X

FCTS · nS
. (1)

TLB estimates the load strength of bursty short flows
according to their arrival rates. The load strength ρ of bursty
short flows is calculated as

ρ =
λ

C
=

mS · X
FCTS · nS · C . (2)

where C is the link capacity in packets per second.
We use qth to denote the switching granularity of long flows.

When the queue length of long flow is larger than qth, the long
flow is rerouted to another egress port. The value of qth is
updated periodically for each time interval t. Then, since the
sum of the number of queued and in-flight packets on the nL

paths occupied by long flows is equal to the amount of data
sent by long flows within the time interval t, we have

qth · nL + t · C · nL = mL · WL · t

RTT
. (3)

Given the total number of paths n = nL + nS , from
Equation (3), we obtain the number of paths nS allocated for
short flows as

nS = n − mL · WL · t
RTT

qth + t · C . (4)

For short flows, the mean flow completion time FCTS

includes the queueing and transmission delay, that is

FCTS = E[W ] · r +
X

C
, (5)
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where X is the average flow size of short flows, X
C is the

transmission delay, r is the number of RTT rounds to finish
transfer of a short flow and E[W ] · r is the expected queueing
delay for r rounds of short flows.

In data centers, about 80% of TCP flows are less than
100KB [12]–[14], [20]–[22]. These short flows mostly finish
in the slow-start phase [20], [23], in which each flow firstly
sends out 2 packets, then 4, 8, 16, etc. Thus, the number of
RTT rounds r to finish transfer of a short flow with size x
bytes is calculated as

r = �log2

x

MSS
� + 1, (6)

where MSS is the size of a TCP segment.
We use the M/G/1-FCFS queueing model [20], [22], [24],

to analyze the average queueing delay E[W ] of each round.
Since the short flows are transferred per packet across the
multiple paths and each packet of the short flows chooses the
shortest path, the expected queueing delay E[W ] is equal to
the average waiting time in each queue for a single packet,
which is obtained from the Pollaczek-Khintchine formula [25]
as

E[W ] =
1 + C2

v

2
· ρ

1 − ρ
· E[S], (7)

where E[S] is the service time of a single packet with its value
as 1

C . C2
v is the squared coefficient of variation of the service

time distribution as

C2
v =

V ar[S]
E2[S]

=
E[S2] − E2[S]

E2[S]
. (8)

Then, the expected queueing delay E[W ] is

E[W ] =
ρ

2(1 − ρ)
· E[S2]

E[S]
=

ρ

2(1 − ρ)
· 1
C

. (9)

Thus, according to the above Equation (2), (4), (5) and (9),
we have the equation about the mean FCT of short flows
FCTS as

FCTS =
mS · X · r

C

2[FCTS · (n − mL·WL· t
RTT

qth+t·C ) · C − mS · X ]
+

X

C
.

(10)

Given that the deadline of each short flow is randomly
distributed between [Dmin, Dmax], we set the associated
default deadline D to the value of 25th percentile in CDF
of the statistical flow deadlines to calculate the switching
granularity for long flows. The reason why the deadline is
set to the 25th percentile and the corresponding experiments
are introduced in Section 6.2. To guarantee that the short
flows complete within their associated deadline D, the mean
flow completion time for short flows FCTS should satisfy
FCTS ≤ D. Finally, the switching threshold qth of queue
length for rerouting the long flows is adjusted according
to the load strength of short flows to meet their deadlines.
Specifically, qth should satisfy the following expression

qth ≥ mL · WL · t
RTT

n − r·X
C +2(D−X

C )·X
2(D−X

C )·D·C · mS

−t · C. (11)

To leave as much resources as possible for long flows to
improve their throughputs, the long flows are rerouted at the

Fig. 6. Numeric and simulation comparison.

minimum value of qth satisfying Equation (11) in our design.
Specifically, when a new packet of a long flow arrives at the
switch, TLB makes forwarding decision based on the real-time
queue length of the current output port of the flow. Once
the queue length reaches the minimum value of qth (i.e.,
the optimal switching granularity), TLB selects the shortest
queue to reroute the arriving packet. Otherwise, TLB forwards
the arriving packet to the same path as the lastly arrival
packet in the same flow without switching. Since TLB is
able to dynamically adjust the switching granularity of long
flows according to the load strength of short flows, the load
balancing mechanism of TLB is resilient to the traffic patterns
with temporal variations.

B. Model Verification

We evaluate the correctness of the theoretical analysis
by NS2 simulations. We use the leaf-spine topology with
15 equal-cost paths between any pair of end-hosts. The bot-
tleneck link bandwidth and switch buffer size are 1Gbps and
512 packets, respectively. We use DCTCP as the underlying
transport protocol. By default, 3 long flows (>10MB) and
100 short flows (<100KB) are generated with heavy-tailed
distribution. The average size of short flows is 70KB in
this simulation. The deadline of each short flow is randomly
distributed between [5ms, 25ms] as illustrated in [17]. We set
the default deadline D as the value of 25th percentile deadline
(i.e., 10ms), which is also used in the following simulations.
In this test, we measure the minimum value of switching
threshold qth for rerouting the long flows under the condition
that no short flows miss their deadlines in the time interval t
of 500μs, which is the general inactivity gap between two
bursts of packets in short flows [1].

Fig. 6 shows the comparison of numerical and simulation
results. The switching threshold qth of queue length for
rerouting the long flows increases as the number of short flows
increases as shown in Fig. 6 (a). With the increasing number of
long flows, qth also increases as shown in Fig. 6 (b), because
the long flows need larger switching granularity under the
increasing workload to meet the delay requirements of short
flows. As shown in Fig. 6 (c) and (d), qth decreases with the
increasing of total number of path and deadline, respectively.
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Fig. 7. Impact of extreme burstiness of short flows on TLB.

In brief, the switching granularities of long flows in numerical
analysis closely follow the corresponding simulation results.

C. Protect Short Flows Under Extreme Burstiness

In Section IV-A, we analyze how to adjust the switching
granularity of long flows to ensure that the short flows com-
plete within their deadlines. This scheme shows effectiveness
in handling bursty traffic caused by a moderate number of short
flows. However, this scheme still cannot cope with the situa-
tion when the number of concurrent short flows is extremely
large. In this subsection, we analyze the impact of extreme
burstiness of short flows and then give the corresponding
solution to protect short flows.

1) Problem Analysis: Traffic bursts are very common in
modern data centers. For example, in Online Data Inten-
sive (OLDI) applications, thousands of servers are likely to
respond nearly at the same time to queries, causing multiple
fan-in bursts at the aggregated switches [17], [26]. In distrib-
uted machine learning jobs, large number of workers simulta-
neously fetch the latest parameters to update a global model
at each synchronized training iteration, generating extremely
bursty traffic [27]. In such extremely bursty scenarios, even
the long flows are transmitted with the largest switching
granularity, there is still not enough available bandwidth to
ensure that all short flows meet their deadlines.

We conduct NS2 simulations to illustrate the impact of
increasing number of short flows on TLB. We use the
leaf-spine topology with 15 parallel paths. The other simula-
tion settings are same as that in Section IV-B. The short flows
start between random pairs of end-hosts following a Poisson
process. We gradually increase the number of short and long
flows from 20 to 200 and 2 to 4, respectively.

Firstly, we measure the deadline missing ratio of short flows.
Fig. 7 (a) shows that the deadline missing ratio keeps close to
0 until the number of short flows increases to a large value.
For example, when the number of short flows is less than
100, the deadline missing ratio is nearly 0. However, when
the number of short flows increases to 140, corresponding
to 2, 3 and 4 long flows, 13.6%, 27.3% and 35.6% of short
flows miss their deadlines, respectively. Then, we test the
corresponding AFCT of short flows. Fig. 7 (b) shows that the
AFCT increases with larger number of short flows, resulting
in performance degradation.

2) Packet Slicing for Long Flows: Broadly speaking,
the short flows have much smaller the lifetime than the long
ones in data center traffic, exhibiting the bursty pattern. Since
the general inactivity gap between two bursts of short flows
is 500μs in data centers [1], [9], we adopt 500μs as the
timescale to update the bursty threshold m�

S for distinguishing

Fig. 8. TLB with and without packet slicing scheme for long flows under
the bursty scenario.

the extremely bursty scenarios. In addition to timescale, m�
S

is also related to traffic pattern and traffic load. Based on the
number of short flows and the number of paths occupied by
short flows, TLB obtains the arrival rate and load strength of
short flows. Then TLB calculates the expected queueing delay
and flow completion time of short flows according to the load
strength. Finally, the bursty threshold m�

S for distinguishing
the extremely bursty scenarios is calculated to ensure that short
flows meet their deadlines.

Specifically, TLB periodically measures the number of
short flows mS every 500μs at the switch. If the number of
short flows mS increases to the bursty threshold m�

S , TLB
deems currently arrival traffic extremely bursty and the switch
triggers the packet slicing scheme [28] to reduce the packet
size of long flows to release bandwidth. Then more short
flows are able to make use of the spare bandwidth to meet
deadline requirements. Therefore, since adjusting the bursty
threshold m�

S to trigger the packet slicing according to the
load strength ρ, TLB works well under the dynamic traffic
load.

We use an example to show the effectiveness of packet
slicing. As shown in Fig. 8 (a), there are 3 parallel paths, two
of which are occupied by bursty short flows with deadline as 4.
One long flow without deadline requirement uses the 3rd path.
Although the long flow do not switch paths, the remaining
two paths are not enough for the short flows to finish before
deadline. In Fig. 8 (b), the packet size of long flow is reduced
to release more bandwidth for short flows. Specifically, each
packet of the long flow is cut to 1/3 of the original packet,
then 2 packets of short flows have opportunity to seize the
spare bandwidth. Finally, none of short flows miss deadline.

We explain the theoretical relation between bursty threshold,
timescale, traffic pattern and load as follows.

(1) Bursty threshold and timescale: TLB periodically
updates the bursty threshold m�

S every 500μs to distinguish
the extremely bursty scenarios.

(2) Bursty threshold and traffic pattern: Under the
dynamic traffic pattern, the numbers of long and short flows
change frequently. Thus, to obtain a proper bursty threshold,
TLB updates the number of paths used by different flows.
Under the extremely bursty scenario, each long flow only takes
a single path without switching in its whole transmission,
the maximum number of paths occupied by the long flows
nL_max is equal to the number of long flows mL. Therefore,
the number of remaining paths for short flows n�

S is obtained
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as n�
S = n− nL_max = n−mL, where n is the total number

of parallel paths.
(3) Bursty threshold and traffic load: TLB estimates the

load strength ρ of bursty short flows according to their arrival
rates λ. We assume that m�

S short flows with average size
of X bytes are transmitted over n�

S paths with an average
completion time of FCT �

S . The load strength ρ bursty short
flows is obtained as

ρ =
λ

C
=

m�
S · X

FCT �
S · n�

S · C =
m�

S · X
FCT �

S · (n − mL) · C , (12)

where C is the service rate in packets per second.
With Equation (5), (9) and Equation (12), we calculate the

mean FCT of short flows FCT �
S as

FCT �
S =

m�
S · X · r

C

2[FCT �
S · (n − mL) · C − m�

S · X ]
+

X

C
. (13)

Thus, we obtain the value of mS when FCT �
S equals to the

flow deadline D as

m�
S =

2DC · (n − mL) · (X − DC)
X · (r − 2X + 2DC)

. (14)

When the measured number of concurrent short flows mS

exceeds the threshold m�
S , the network scenario is deemed

extremely bursty. TLB triggers the packet slicing scheme [28]
to reduce the packet size of long flows to release bandwidth
for short flows to meet deadlines.

Next, we analyze the slicing ratio k of long flows. For exam-
ple, if packet size is halved, the corresponding slicing ratio
is 2. After the packet slicing is triggered, the corresponding
number of available paths for short flows n��

S can be presented
as

n��
S = n − mL

k
. (15)

According to Equation (2), (5), (9) and (15), we have the
equation about the mean FCT of short flows FCT ��

S as

FCT ��
S =

mS · X · r
C

2[FCT ��
S · (n − mL

k ) · C − mS · X ]
+

X

C
. (16)

To protect short flows from missing deadline D, FCT ��
s

should satisfy FCT ��
S ≤ D. Therefore, the slicing ratio k of

long flows should satisfy the following expression

k ≥ mL

n − mS ·X· r
C

2(D−X
C )·D·C − mS ·X

D·C
. (17)

In order to ensure the throughput of long flows as high as
possible, we use the minimum value of k satisfying Equa-
tion (17) in our design.

D. Threshold Analysis of Distinguishing Flow Type

As the traffic workload pattern changes over time,
an improper threshold for distinguishing short and long flows
degrades the performance of TLB. On the one hand, if the
threshold is too large, some long flows are mistakenly dis-
tinguished as short ones, resulting in increasing of queueing
delay of short flows. On the other hand, under a too small
threshold, some short flows are mistakenly distinguished as
long ones. The short flows handled as long ones are not able
to flexibly utilize multiple paths to finish quickly.

Fig. 9. The impact of thresholds for realistic workloads. Specifically, CF,
HC, WS and DM stand for Cache Follower, Hadoop Cluster, Web Search and
Data Mining, respectively.

According to the flow size distribution in data centers, that
is, most flows are less than 100KB [13], [14], [20]–[23], [29],
TLB sets the flow size threshold as 100KB to distinguish short
and long flows. At the beginning, all flows are treated as short
flows. Once the number of sent bytes in one flow exceeds the
threshold (i.e., 100KB), the flow is considered as a long one.

We conduct testbed experiments to analyze the impact
of thresholds under four different realistic workloads. The
experimental settings are as same as that in Section A. We test
four different static thresholds (i.e., 10KB, 100KB, 1MB,
2MB) without any prior knowledge of flow size distribution.
With prior knowledge, the clairvoyant threshold is set to
the 80th percentile size of all flows. Fig.9 (a) shows the
number of flows distinguished as long ones by TLB. When the
threshold is 100KB, the numbers of long flows distinguished
by TLB under Hadoop Cluster and Data Mining are close
to that of clairvoyant threshold, because around 20% flows
are larger than 100KB in these workloads. Some short flows
are mistakenly classified as long ones under Cache Follower
and Web Search with the 100KB threshold, resulting in larger
number of long flows than the clairvoyant threshold. Fig.9 (b)
shows the average and 99th-ile FCTs of all flows. When the
threshold becomes larger, more long flows are distinguished
as short ones, resulting in larger queueing delay of short flows
and longer FCTs of all flows.

To keep up with dynamic traffic patterns more accurately,
we propose a simple yet effective scheme called TLBdth to
dynamically adjust the threshold for distinguishing short and
long flows at the receivers. Specifically, since multiple senders
send flows to the receiver in typical many-to-one transmission
scenarios, TLBdth maintains active and finished flow tables at
each receiver to keep track of traffic variations. When a flow
is established, a new entry is inserted into the active flow table
and the received bytes are updated. When a flow is finished,
the corresponding entry is removed from the active flows table
and a new entry is added in the finished flows table to record
its flow size. The flow size threshold is updated periodically
(e.g., 500μs) to the 80th percentile size of finished flows.
Since historical traffic cannot reflect the future traffic perfectly,
mismatches between threshold setting and underlying traffic
are inevitable.

However, before the long flows are identified, the negative
impact on the short flows is very small. Firstly, the threshold
for detecting large flows is relatively small, which is close to
the size of the largest small flows. Since short flows randomly
start transmission during the whole live time of long flows,
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the new short flows will not be affected by the long flows
after the long flows are identified. Secondly, the number of
large flows is relatively small, accounting for about 20% of the
total number of flows. Thus, the aggregated negative impact
of unidentified long flows on short ones is still bounded.

Once the received bytes of a flow exceed the threshold,
this flow is distinguished as a long one. To notify the sender,
the receiver sets the highest bit of Type of Service (ToS)
field in ACK header to 1. After receiving this notification
from receiver, the sender marks the highest ToS bits of all
the remaining data packets of this flow to 1, to guarantee
the classification consistency. Finally, for each arrival packet,
the switch distinguishes its flow type according to the highest
ToS bit in packet header. Therefore, the notification delay
is less than one RTT. Note that, if none packet is received
during the threshold update period, the corresponding flow
record is removed from the active flow table. Compared with
the fixed threshold, Fig.9 (a) shows the number of long flows
distinguished by TLBdth under dynamic threshold are closer
to the clairvoyant value. Fig.9 (b) shows TLBdth achieves the
lower average and 99th-ile FCTs of all flows than the other
static thresholds.

TLBdth is proposed as an alternative version of TLB to
dynamically adjust the threshold for distinguishing short and
long flows at the receivers. TLBdth can be easily deployed on
all servers in a controllable environment. However, TLBdth

becomes infeasible if the administrator cannot control protocol
stack of all servers in some complex cases such as multi-tenant
data centers. In our future work, we will investigate sketch
methods [30]–[33] of distinguishing long and short flows at
switches to improve the scalability and efficiency of TLB.

V. IMPLEMENTATION

We implement TLB on a commodity programmable switch
and use P4 programming language to specify how the
switch processes packets. To store the variable value, the
P4-programmed switch provides a limited amount of regis-
ters, which are implemented in on-chip static random access
memory (SRAM) [34]–[36]. However, unlike the extremely
small number of registers in CPU architecture, P4 switch
can extend the number of registers by using more SRAM.
In terms of access manner, register in P4 switch is stateful
memory whose value can be directly read and written at line
rate according to the address index [35], [37], [38]. The chal-
lenge of implementing TLB in Application Specific Integrated
Circuit (ASIC) is to ensure accessing resources exclusively in
the pipelined packet processing. The ingress pipeline for data
packets of TLB implementation is shown in Fig.10, which
contains multiple primary match-action tables.

Specifically, in the Flowtype table, if the ingress metadata
flow.sent.size representing the number of bytes sent by a
flow is less than 100KB, the flag of long flow lf is set
to 0, otherwise lf is set to 1. TLB reroutes the long flows
according to the number of short flows, which is recorded in
the ingress metadata sf.num. In the Clonepkt table, the packet
slicing scheme is triggered if sf.num is larger than m�

S ,
which is calculated according to Equation (12). Meanwhile,
the arrival packet of long flow is cloned from ingress to egress
by using the primitive action clone. The intrinsic metadata of
the cloned packet is modified as the same as Internet Control

Fig. 10. Ingress pipeline for data packets in TLB’s P4 implementation.

TABLE I

RESOURCE CONSUMPTION OF DIFFERENT SCHEMES

Message Protocol (ICMP) packet, which includes 20 bytes
of IP header, 8 bytes ICMP header and 8 bytes of ICMP
data. The type and code fields in the ICMP header are set
to 3 and 4, respectively. The Next-Hop MTU field in ICMP
header is updated as the original packet size divided by k
obtained from the Equation (15). In the IP header, the ICMP
message’s destination address is changed to the source address
of the original packet. The source and destination ports of
the long flow are filled in the ICMP data field. Then the
cloned ICMP packets carrying the packet slicing information
are directly forwarded to the senders. The original packet
selects destination port in the next stage.

The implementation leverages the current queue size of
egress ports to choose output port. However, there is no such
information in the ingress intrinsic metadata on hardware
P4 platform. Thus, we implement the queue size SRAM
qs with a similar functionality by counting the packets that
enqueue and dequeue the egress port. In the Readsram table,
the queue length is read from the queue size SRAM qs by
using stateful ALUs. Then, in short flows, the packet chooses
the destination port fwd.port with the minimum queue length
in the Forwardport table. In long flows, the packet enters into
Setswitch table. Once the queue size of output port of the
previous packet in the same flow exceeds the threshold qth,
the switching path flag switch is set to 1 and then fwd.port
is set to the port with the minimum queue size minqs.port
in the Forwardport table. Otherwise, switch is set to 0, and
fwd.port is set to the same output port of the previous packet
in the same flow. Finally, the queue size of selected port is
updated by using resubmit primitive. The packet is forwarded
according to the Forward table in the ingress pipeline.

Table I shows the hardware usage of various resources
of four schemes in our testbed test. RPS has the lowest
overhead for all resources due to its random forwarding.
Compared to the other schemes, TLB uses a relatively larger
proportion of resources, because TLB needs more pipeline
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stages to identity short and long flows, calculate the switching
granularity of long flows, and compare the queue length of
all ports. Meanwhile, TLB needs more SRAM and stateful
ALUs to store and update the flow size, the number of short
flows and the queue size of the egress ports. Nonetheless,
the overall resources consumption for TLB remains very low,
meaning that TLB can be deployed in high-speed switch with
reasonable resources consumption.

There are some considerations in TLB implementation.
Although most OLDI datacenter applications such as web
search, social networking and retail have strict deadline con-
straints (i.e., 300ms latency) [17], [22], [39], some datacenter
applications such as HTTP chunked-transfer and database
access generate short flows without deadlines [22]. Moreover,
various applications may have different deadline requirements
of short flows. In the case of lacking deadline information of
short flows, we use an alternative method which deduces the
specified flow deadline from the statistics of network traffic.
Specifically, we set the deadline to the value of 25th percentile
in CDF of the statistical flow deadlines. The corresponding
experimental results in Section VI-B show that TLB works
well in dark.

Since the switches have no prior knowledge of the flow
size, TLB distinguishes short and long flows according to
the number of bytes a flow has already sent. Specifically,
TLB records a flow as a key-value pair (key, count), where
key is the flow ID, and count is the number of sent packets
belonging to this flow. A flow is identified by the unique
5 tuples, i.e., source/destination IP addresses, protocol, and
source/destination ports. When a packet enters the ingress
pipeline, TLB uses CRC16 algorithm as the hash function
that converts 5 tuples in packet header into flow ID. For
each flow record, TLB uses a flow ID of 16bits, a counter
of 7bits, a flow type flag of 1bit, a switching path flag of 1bit
and the output port of the previous packet of 7bits, with a
total of 32 bits. Since the long flows are identified at the
receivers, TLBdth distinguishes the flow type at all switches
according to the highest ToS bit in packet header marked by
the senders, which does not cause additional lookup delay.
Therefore, TLBdth only adds 1bit of flow type in each flow
entry at all switches. Compared with TLB, TLBdth does not
need to record the number of sent packets for each flow at
switch, reducing storage and computing overhead at switches.
For TLBdth, there is no 7bits counter for each flow, thus saving
21.8% SRAM space. According to the measurement results of
datacenter traffic in [12] and [14], there are generally hundreds
of concurrent flows on a server and up to 10,000 concurrent
flows through a switch. For 10,000 flows, TLBdth needs
31.25KB SRAM to record the flow states. Today’s P4 switches
support up to 50∼100 MB SRAM [40], which is sufficient for
TLBdth to handle a reasonably large number of concurrent
flows.

VI. SIMULATION EVALUATION

A. Large-Scale Test

We conduct the large-scale simulation to evaluate TLB’s
performance in the typical applications in data centers.
We choose the web search and data mining applications [20],
[22], [23]. In these workloads, the distributions of flow size are
heavy-tailed. For the web search workload, about 30% flows

Fig. 11. Web search application.

Fig. 12. Data mining application.

are larger than 1MB, while in data mining scenario there are
around less than 5% flows larger than 35MB.

We compare TLB with the following four state-of-the-art
load balancing schemes. ECMP hashes each flow to one of the
available paths based on the 5 tuples in the packet header. RPS
randomly sprays each packet to all available paths to make
traffic evenly distribute among parallel paths. Presto performs
rerouting at the same granularity with uniform unit of flowcell
(i.e., 64KB), which are assigned over multiple paths evenly
in a round-robin fashion. LetFlow randomly switches flowlets
among equal-cost paths.

We use the common leaf-spine topology with 8 ToR and
8 core switches [2]. The whole network has 256 hosts con-
nected by 1Gbps links. The round-trip propagation delay is
100μs and the switch buffer size is set to 256 packets. The
traffic is generated by randomly starting flows via a Poisson
process between random pair of hosts. The deadlines of short
flows are randomly distributed between [5ms, 25ms]. The
switching granularity of long flows is updated every 500μs.
We vary the overall workload from 0.1 to 0.8 to thoroughly
evaluate TLB’s performance.
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Fig. 11 (a), (b) and Fig. 12 (a), (b) show the average and
99th percentile FCT of short flows under the web search and
data mining workloads, respectively. TLB improves AFCT and
tail FCT significantly compared with the other four schemes,
especially in high workloads. Specifically, in the web search
scenario, TLB reduces AFCT by ∼68%, ∼55%, ∼45% and
∼25% at 0.8 workload over ECMP, RPS, Presto and LetFlow,
respectively. Fig. 11 (c) and Fig. 12 (c) show the deadline
missing ratio of short flows. TLB ensures that more than
90% short flows meet their deadlines.

These test results demonstrate the advantage of TLB with
adaptive switching granularity for different kinds of flows.
Under the same switching granularity, when the workload
becomes high, more mixed flows are queued in the same
output ports at the switches, resulting that more short flows
hit the long tail and experience packet reordering. Especially,
since most short flows experience large queueing delay under
large rerouting granularity (e.g., ECMP) or have lots of
reordering packets under small switching granularity (e.g.,
RPS), the delay performance is degraded. For LetFlow, the per-
formance is better in the high load because more flowlet gaps
occur for switching under bursty and congestion scenarios.

Moreover, we find that short flows in the web search
workload have larger FCT than those in the data mining. The
reason is that there are more medium flows with the size from
100KB to 1MB and more long flows in the web search, leading
to larger queue length and more packet reordering. While in
the data mining, the size between large number of short flows
and a few long flows has obvious boundary, thus resulting
in less out-of-order packets. For LetFlow scheme, however,
the performance in the data mining scenario is worse than
that of in the web search because there are fewer flowlet gaps
to change path.

We also test the throughputs of long flows. As shown
in Fig. 11 (d) and Fig. 12 (d), the long flows in the schemes
with large rerouting granularity suffer the greater throughput
degradation. Since TLB flexibly adjusts the size of switching
granularity for long flows based on the traffic strength of short
flows, it makes good use of multiple paths and thus achieving
the high throughputs of long flows.

B. Deadline-Agnostic Case

In some cases, it is hard to get the deadline information of
short flows in advance. Moreover, since some latency-sensitive
applications have various delay requirements, the deadlines of
short flows may be different. For these scenarios without prior
deadline knowledge or with different deadlines, we use an
alternative method to protect short flows. Specifically, we set
a fixed deadline for all short flows according to the statistics
of deadline distribution. In this test, the accurate deadline of
each short flow is randomly distributed between [5ms, 25ms]
as illustrated in [17]. We specify the 5th, 25th, 50th and 75th

percentile deadlines with the specified values of 5ms, 10ms,
15ms and 20ms, respectively [17]. The simulation topology
and settings are as same as that in the large-scale simulations
in Section VI-A. We measure the AFCT, 99th-ile FCT and
deadline missing ratio of short flows, and the throughputs of
long flows under the web search application scenario.

Fig. 13 shows the performances of deadline-agnostic TLB.
As shown in Fig. 13 (a) and (b), the AFCT and 99th-ile

Fig. 13. Performances of deadline-agnostic TLB.

FCT become larger with the increasing workload. Moreover,
the cases of TLB-5th and TLB-25th obtain the small FCT
compared with the other cases. Fig. 13 (c) shows the deadline
missing ratios of TLB-5th and TLB-25th are much lower
than the laxer deadline settings. In Fig. 13 (d), the cases of
TLB-25th, TLB-50th and TLB-75th obtain the almost same
throughputs of long flows, which are much higher than that of
TLB-5th case. Therefore, we set the deadline of all short flows
as the 25th percentile of statistical deadlines, which achieves
the best performance in the deadline-agnostic TLB.

VII. TESTBED EVALUATION

In this section, we conduct experiments on a physical test-
bed shown in Fig.1. The default topology consists of 3 senders
and 3 receivers with 10 cores Intel Xeon W-2255 CPU,
64GB memory, Mellanox ConnectX-5 EN 100GbE dual-port
QSFP28 NICs and Ubuntu 18.04 (Linux version 4.15.0-1090).
These servers connect to the corresponding leaf switch with
100Gbps links. Between two leaf switches, there are 6 parallel
paths, each of which has 40Gbps bandwidth. We implement
6 different schemes including ECMP, RPS, Presto, LetFlow,
AG [41] and TLB at the hardware programmable switch
by using P4 programming language. AG adaptively adjusts
switching granularity according to the asymmetric degree of
all paths and reroutes randomly.

A. Performances Under Symmetric Scenario

In this test, we evaluate TLB performance with and without
prior knowledge of flow size (i.e., TLB* and TLB) under vary-
ing number of short and long flows. The default numbers of
short flows (<100KB) and long flows (>5MB) are 200 and 3,
respectively. The overall traffic obeys the heavy-tailed distri-
bution in web search workload [14]. The deadlines of short
flows are randomly distributed between [0.1s, 0.3s]. We use the
25th percentile deadline (i.e., 0.15s) to calculate the switching
threshold of queue length for rerouting long flows. The flowlet
timeout and updating interval of switching granularity are
500μs [9].

At first, we gradually increase the number of short flows
from 40 to 240 with fixed 3 long flows. Then we increase the

Authorized licensed use limited to: Central South University. Downloaded on July 05,2021 at 07:00:00 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: ADJUSTING SWITCHING GRANULARITY OF LOAD BALANCING 11

Fig. 14. Varying the number of short flows.

Fig. 15. Varying the number of long flows.

Fig. 16. Overhead of the leaf switch with varying short flows.

number of long flows from 2 to 12 with fixed 200 short flows.
Fig.14 (a) shows that, with more short flows, TLB reduces
the AFCT of short flows by ∼41-73%, ∼36-68%, ∼22-59%,
∼16-50% and ∼7-28% over ECMP, RPS, Presto, LetFlow and
AG, respectively. As shown in Fig.14 (b), TLB improves the
average throughput of long flows by ∼40-93%, ∼16-35%,
∼23-49% and ∼9-23% over ECMP, Presto, LetFlow and AG,
respectively. With more long flows, Fig.15 (a) and (b) show
that TLB achieves better performance compared with the other
schemes by adaptively adjusting the switching granularity of
long flows. Due to the inflexibility in rerouting flows, ECMP
and LetFlow suffer from the long-tailed delay and low link
utilization. For RPS and Presto, the packet reordering degrades
their performances especially under the heavy workload.

Moreover, though TLB has not any prior knowledge of the
flow size, the threshold for long flows is only 100KB, which is
much smaller than the long flow size, and the number of long
flows is very small, accounting for less than 10%, the impact
of long flows on load balancing is negligible when the long
flows are mistaken as short flows in the beginning. Therefore,
TLB achieves almost the same performance as TLB*.

Fig.16 and Fig.17 show the maximum, minimum and aver-
age values of CPU and memory utilization ratios of switch
with varying short and long flows, respectively. For ECMP
and RPS, due to their simple flow-level hash and packet-level
random routing, the CPU utilization is very low as shown
in Fig.16 (a) and Fig.17 (a). The other schemes incur a little

Fig. 17. Overhead of the leaf switch with varying long flows.

more CPU overhead and memory utilization due to their more
sophisticated operations in rerouting packets. Compared with
the other schemes, TLB brings about reasonable memory
utilization and does not incur excessive CPU overhead. For
example, in the case of 100Gbps bandwidth, Fig.16 shows
that the average utilizations of CPU and memory under TLB
are less than 17% and 2.24%, respectively. In addition, as the
link rate increases from 10Gbps to 100Gbps, the utilizations of
CPU and memory increase in all schemes because the switch
needs to process packets more quickly. Overall, the test results
show that TLB is easily deployed in the actual reconfigurable
switch with acceptable CPU and memory overheads.

B. Performances Under Varying Rates and Paths

We implement TLB in P4 programming language and com-
pile it to a hardware programmable switch target. As shown
in Fig.10, the P4 program of TLB is compiled into a pipeline,
which consists of multiple stages that can only be executed
serially. In current ultra-high-speed switches, the delay over-
head of reading and updating queue lengths of all egress ports
potentially results in inaccurate globe information. Moreover,
in TLB’ P4 implementation, the queue length in the egress
intrinsic metadata cannot be directly used in the ingress
pipeline control. Therefore, in order to reduce the overhead of
querying all egress ports information on per-packet granularity,
we estimate the queue length of egress ports at the ingress
control logic.

Specifically, when a packet arrives at the switch and enters
the ingress pipeline, it reads the queue length of each egress
port from the corresponding Readsram table by using stateful
ALUs. After the packet selects the destination port, the queue
length of destination port is updated. The queue size of each
egress port is calculated according to the number of packets
that enqueue and dequeue the egress port within the time
interval between two consecutive packets arriving at the egress
port. Here, we conduct the testbed experiments to test the
estimation overhead and accuracy with varying link rate and
number of output ports.

Firstly, we test TLB performance with bandwidth ranging
from 10 Gbps to 100Gbps. As shown in Fig.18 (a) and (b),
under different bandwidths, TLB outperforms the other
schemes in average FCT and deadline missing ratio since
less short flows are blocked by the long ones. Meanwhile,
Fig.18 (c) shows that TLB achieves high throughput of long
flows by adjusting the switching granularity. Fig.18 (d) shows
the average CPU utilization of switch. Considering the per-
formance improvements of short and long flows, the CPU
utilization overhead of TLB is still acceptable.
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Fig. 18. Increasing link bandwidth.

Fig. 19. Increasing number of parallel paths.

Secondly, we increase the number of parallel paths
from 2 to 8. The link bandwidth is 40Gbps. Fig.19 shows that,
with more parallel paths, TLB needs to read the queue lengths
from more SRAM and update length information for more
queues. However, compared with the benefits of TLB’s flexible
load balancing mechanism, the increased CPU overhead due to
reading and writing SRAM is negligible. For example, under
6 parallel paths, TLB reduces AFCT of short flows by 51%
and improves the throughput of long flows by 44% with about
20% CPU utilization.

We record the estimated queue length qe of destination
port in the ingress pipelined control and the real queue
length qr in the egress intrinsic metadata. We use the queue
length deviation |qe−qr |

qr
× 100% to evaluate the estimation

accuracy of queue length. As shown in Fig.20 (a) and (b),
under different bandwidths and number of parallel paths,
the estimated queue length is close to the real one. For
example, the queue length deviation is less than 5% under
40Gbps bandwidth and 6 parallel paths scenario. The pro-
portions of positive and negative deviation are almost equal.
The overestimation and underestimation of queue length may

Fig. 20. Queue length deviation.

TABLE II

VARYING TRAFFIC PATTERNS AND LOAD

lead to inaccurate switching granularity of long flows. The
underestimation of queue length leads to larger switching
granularity of long flows. Consequently, the short flows obtain
more bandwidth and complete faster within their deadlines.
On the contrary, the missing deadline ratio of short flows will
increase due to insufficient available bandwidth. However, due
to the small deviation between the estimated and real values
of queue length, as well as the randomness of favorable and
unfavorable deviation, the impact on load balancing is very
small. As shown the experimental results, the short flows
achieve stably better performance in TLB compared to the
other schemes.

C. Performances Under Varying Traffic Patterns

From a macro perspective, the heterogeneous traffic exhibits
the stable heavy-tailed distribution in data centers [12]–[14].
From a micro viewpoint, however, datacenter traffic is very
bursty and unpredictable at short timescales (e.g., 10∼100s of
microseconds) [1]. TLB detects traffic changes by periodically
updating the number of flows. Since TLB dynamically adjusts
the switching granularity of long flows according to the
number of short flows, TLB is resilient to the time-varying
traffic patterns. Specifically, each packet of short flows selects
the path with the shortest queue length under any traffic
pattern. The long flows also choose the shortest queue when
rerouting.

To test TLB performance in varying traffic patterns and
load, we conduct testbed experiments by changing the ratio
of short flows to long ones and traffic load over time. There is
one long flow with 10MB. As shown in Table II, in the first
case of varying traffic pattern, we increase the average size
of 100 short flows per 20ms. In the second case, we increase
the number of short flows with a fixed size of 50KB per 20ms.
In the third case, both the traffic load and traffic ratio change
over time. We vary the traffic load from 0.2 to 0.6. Meanwhile,
the traffic ratio of short flows to long ones changes from
1:9 to 5:5. The test topology is shown in Fig.1. We vary the
bandwidth of parallel paths from 10Gbps to 100Gbps.

Fig.21 shows that TLB outperforms other schemes in terms
of the average FCT and 99th-ile FCT of short flows, because
TLB flexibly adjusts the switching granularity of long flows
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Fig. 21. Varying traffic patterns.

under varying traffic load and adjusts the bursty threshold
timely to trigger the packet slicing according to the load
strength in bursty scenario. Under presto, many short flows
do not switch path due to their sizes less than 64KB. Under
LetFlow, the short flows also rarely reroute since the packet
interval is not large enough.

D. Performances Under Extremely Bursty Scenario

To evaluate the performance of TLB under highly concur-
rent flows, we conduct testbed experiments to compare the
deadline missing ratio and AFCT of short flows, the through-
put of long flows without and with packet slicing. The testbed
consists of 5 senders and 3 receivers with 10 cores Intel
Xeon W-2255 CPU, 64GB memory, Mellanox ConnectX-
5 EN 100GbE dual-port QSFP28 NICs and Ubuntu 18.04
(Linux version 4.15.0-1090). These servers connect to the
corresponding leaf switch with 100Gbps links. Between two
leaf switches, there are 10 parallel paths, each of which has
40Gbps bandwidth. The other experimental settings are as
same as that in Section VII-A.

According to the measurement results of datacenter traffic
in [12] and [42], there are generally hundreds of concur-
rent flows on a server. In this test, the number of short
flows generated by each server increases from 100 to 500,
resulting in the total number of short flows changing from
500 to 2500. The size of short flows varies randomly from
10KB to 100KB, and the size of long flows varies randomly
between 10MB and 30MB. The bursty short flows and long
flows generated between random pairs of servers arrive in
Poisson distribution. When multiple long flows arrive at a
same receiver, the 100Gbps link connected with the receiver
is the bottleneck. We set the deadline of short flows as 25th

percentile value according to the deadline distribution. The
default numbers of short and long flows are 2000 and 25,
respectively.

Fig.22 (a) and (b) show that, when the packet slicing scheme
is enabled, the deadline missing ratio and AFCT are decreased
by up to 80% and 44% compared with the cases without
packet slicing, respectively. The reason is that, if even the
largest switching granularity of the long flows cannot protect
the very large number of short flows, the long flows will cut
their packets to provide more spare bandwidth for helping
short flows to meet their deadlines. As for long flows, however,
the average goodput of each long flow is inevitably degraded
due to packet overhead as shown in Fig.22 (c).

Next, we set the number of short flows to 2000 and change
the number of long flows. Fig.22 (d), (e) and (f) show that,
with more long flows, the packet slicing scheme significantly
improves the performances of short flows. When the number

Fig. 22. Varying the number of short and long flows.

Fig. 23. Varying delay in asymmetric scenario.

of long flows increases from 10 to 30, for 2000 short flows,
the deadline missing ratio is reduced to less than 15% and
the AFCT remains very small. Fig.22 (f) shows the average
goodput of each long flow. For example, in the case of 25 long
flows in Fig.22 (f), the average goodput is about 5Gbps without
packet slicing. For each link connected with the receiver,
the average link utilization ratio is 25×5

100×3 = 41.6% when
packet slicing is disabled.

E. Performances Under Asymmetric Scenario

We test TLB performance in the asymmetric scenarios.
The default experimental settings are as same as that in
Section VII-A. We respectively vary the number of back-
ground flows from 0 to 4 on one randomly selected paral-
lel paths and vary the number of paths from 0 to 4 with
bandwidth of 40Gbps to change the degree of topology
asymmetry.

As shown in Fig.23 and Fig.24, under the greater delay
or bandwidth asymmetry, TLB achieves more performance
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Fig. 24. Varying bandwidth in asymmetric scenario.

improvement compared with ECMP, RPS and Presto. Under
ECMP, the short and long flows experience large tailed delay
and throughput degradation once being hashed to bad paths.
For Presto and RPS, the flows suffer the packet reordering and
perform badly due to the delay or bandwidth diversity under
the asymmetric scenarios. Since using flowlet switching and
adaptive switching, LetFlow and AG are resilient to network
asymmetry and perform well especially under the high degree
of asymmetry. Overall, TLB outperforms all other schemes
because it is able to perceive traffic heterogeneity and flexibly
reroute short and long flows with different granularities.

VIII. RELATED WORK

In this section, we classify prior work on loading balancing
for heterogeneous traffic in DCNs into flow-based, flowlet-
based, flowcell-based and packet-based schemes below.

Flow-Based Schemes: ECMP forwards each flow by using
flow hash. To avoid hash collision in ECMP, Hedera [45]
dynamically schedules flows by a central controller to alle-
viate hotspots. MicroTE [46] schedules flows by leveraging
the partial predictability of traffic matrix through OpenFlow
switches. FlowBender [47] reroutes the flow when the con-
gestion or link failure is detected. The authors in [48] propose
a congestion-aware algorithm to assign flows to the available
paths online.

Some other flow-based multi-path transmission schemes are
proposed to schedule heterogeneous flows in different ways.
Karuna [22] balances the interests of mix-flows with and
without deadlines by using rate-control and priority-based flow
scheduling. RepFlow [20] simply replicates each short flow
to reap multi-path diversity in data centers. Freeway [49]
adaptively partitions the transmission paths into low latency
paths and high throughput paths respectively for the short and
long flows. In [50], each flow is assigned to an available path
with the minimum marginal network cost, achieving a good
load balancing performance.

Recently, some work focuses on data center network fea-
tures to solve the dynamic load balancing problem. In [51],
the proposed load balancing algorithm divides a multi-tier
fat-tree topology into multiple routing domains with inde-
pendent routing processes for better efficiency and scalabil-
ity. In [52], a set of specific converters are designed for
multiple topologies in hybrid switching data center networks
to reduce the maximum link utilization and achieve better
load balancing. To improve scalability for mega data cen-
ters, the devolved controllers are used to balance workload
among controllers and alleviate reconfiguration complexities
in dynamic situations [53].

In brief, the above flow-based scheduling schemes have no
packet reordering, but easily lead to the long-tailed latency
or low-utilization problems under the highly dynamic traffic
since the long flows are not able to switch flexibly.

Flowlet-Based Schemes: CONGA [1] uses in-network con-
gestion feedback to estimate load and switches flowlets with
the global congestion information to achieve good perfor-
mance. LetFlow [9] randomly reroutes flowlets to naturally
balance the traffic since the flowlet size changes automatically
based on the traffic conditions on their paths. Flowtune [54]
allocates an optimal transmission rate for each flowlet by using
a centralized allocator. Clove [55] picks paths for flowlets in a
weighted round-robin manner at the end-hosts. Expeditus [56]
collects local congestion information and employs a two-stage
path selection scheme to route flows or flowlets to improve net-
work performance. HULA [57] is a data-plane load-balancing
scheme for programmable switch. It directs flowlets to the best
path according to the hop-by-hop congestion state. However,
since the flowlet-based schemes only perform rerouting when
the flowlets emerge, if the flowlet timeout value is large, they
cannot always make full use of multiple paths due to rare
flowlet opportunities [2].

Flowcell-Based Schemes: Presto [8] performs load bal-
ancing at the same granularity of fixed-size flowcell (i.e.,
64KB) for both short and long flows, which are rerouted in a
congestion-oblivious way. Presto needs to use the TCP offload
functionality at the receiver to reassemble the out-of-order
flowcells to prevent the reordered packets from being pushed
up the networking stack. Luopan [58] periodically samples
two random paths between the source and destination switches
and forwards flowcells to the least congested one. As a
sampling-based load balancing scheme with low overhead,
Luopan performs well in asymmetric topologies and obtains
lower flow completion time than Presto.

Packet-Based Schemes: RPS [6] randomly sprays all pack-
ets to multiple paths to achieve high network utilization.
MMPTCP [21] randomly spreads the packets of short flows to
reduce the FCT and transmits the long flows by MPTCP [59]
to improve their throughputs. DRILL [3] switches each packet
quickly and flexibly based on the local queue information
by using a method similar to the power of two choices
paradigm [60]. However, the above packet-based load balanc-
ing schemes potentially incur reordering especially under the
asymmetric topology. AG [41] adaptively adjusts switching
granularity according to the asymmetric degree of all paths
to be robust to various path diversities. Hermes [2] timely
and cautiously makes rerouting decisions only when it will be
benefit. Compared with Hermes, instead of using ECMP, TLB
flexibly routes short flows to all non-congested paths at packet
granularity. Thus, the short flows avoid being blocked by the
long ones and almost have no packet reordering.

Despite significant efforts, the above load balancing
schemes lack the ability to dynamically adjust the switching
granularity on different types of flows. Our solution TLB
works through a new perspective: TLB adopts different granu-
larities to switch short and long flows rather than all flows pick
paths with the same granularity. The switching granularity of
long flows is adaptively changed based on the traffic load of
short flows. Thus, TLB successfully addresses the long-tailed
queueing delay, low network utilization and packet reordering
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Fig. 25. Average and 99th-ile FCT under realistic workloads.

problems to guarantee both the low latency of short flows and
high throughput of long flows.

IX. CONCLUSION

We proposed a novel traffic-aware adaptive granularity load
balancing design TLB that reduces flow completion time
for short flows and simultaneously improves throughputs for
long flows. Specifically, TLB adaptively adjusts the rerouting
granularity of long flows according to the load strength of short
ones. Therefore, the short flows have more opportunities to
make full use of the less-congested paths unused by long flows.
The long flows are also able to flexibly change the switching
granularity to improve their throughputs. The results of testbed
experiments and large-scale NS2 simulations demonstrate that
TLB significantly reduces the AFCT of short flows by up
to 67% under high workload over the state-of-the-art load
balancing schemes and improves the throughput of long flows
by up to 93% compared with flow-based load balancing
schemes.

APPENDIX A
PERFORMANCES UNDER REALISTIC WORKLOADS

We evaluate TLB and TLBdth over four realistic datacenter
workloads, including cache follower, hadoop cluster, web
search and data mining [2], [22], which cover the average
flow sizes ranging from 701KB to 7.41MB and most flows are
less than 100KB. In these four workloads, the flow size are
heavy-tailed distributions. The traffic are randomly generated
between 3 pair of hosts and arrive in Poisson process.

We measure the average and 99th-ile FCTs across dif-
ferent flow sizes. As shown in Fig.25, TLB with the static
100KB threshold and dynamic threshold performs better than
the other schemes. Since TLBdth measures the flow size
distribution and adaptively adjusts the threshold to keep up
with dynamic traffic, TLBdth achieves the best performance
under four workloads. Moreover, TLB still works better under

Fig. 26. FCT slowdown under realistic workloads.

different workload patterns than the other schemes based on
static threshold for the following reasons. Firstly, only a few
short flows being mistakenly distinguished as long ones are
adversely affected. Secondly, even if long flows are mistaken
for short ones at the beginning, the negative impact is very
small due to the small number of long flows and small
threshold compared with the large size of long flows.

To quantify system overhead introduced by the TLBdth

for detecting and tagging long flows, we deploy it on a
Dell PRECISION TOWER 5820 desktop with a Mellanox
ConnectX-5 EN 100GbE dual-port QSFP28 NIC and mea-
sured CPU usage. We started 4 long flows and achieved
∼96Gbps throughput. The extra CPU usage caused by TLBdth

is less than 2% compared with the case where the TLBdth is
not enabled.

Fig.26 shows the test results of slowdown, which is defined
as the ratio of the measured FCT to the ideal FCT without any
congestion. The X-axis are linear in the total number of flows
(the first tick is 10% of all flows and each tick is increased
by 10% of all flows). The results show that TLB achieves
lower slowdown than other schemes for short flows less than
100KB across all workloads. For example, in Hadoop Cluster
workload, TLB reduces slowdown by 77%, 72%, 66%, 58%
and 29% with the flow size less than 10 packets on average
over ECMP, RPS, Presto, LetFlow and AG, respectively. For
medium long flows with size between 100KB and 1MB, TLB
achieves the similar FCT performance as LetFlow and AG.
For long flows larger than 1MB, TLB also obtains the best
performance.

APPENDIX B
PERFORMANCES UNDER P4 SOFTWARE SWITCH

To show the feasibility of TLB in software, we con-
duct experiments based on P4 software switch and Mininet,
which is a high fidelity network emulator for software-defined
networks based on Linux kernel [20], [23]. We imple-
ment the packet processing pipeline of TLB with P416 1.0.
We use Mininet 2.3.0 to create a leaf-spine topology with
10 equal-cost paths between the leaf and spine switches on
a server, which is a Dell PRECISION TOWER 5820 desktop
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Fig. 27. Varying number of short flows.

Fig. 28. Varying number of long flows.

with 10 cores Intel Xeon W-2255 CPU, 64GB memory, Mel-
lanox ConnectX-5 100GbE NICs and Ubuntu 16.04. We set
the link bandwidth to 200Mbps due to the limited switching
ability on a single machine and delay to 1ms [43]. The
behavioral model version 2 (BMv2) is installed as the software
programmable switch with the buffer size of 256 packets.
The default numbers of short flows less than 100KB and
long flows larger than 5MB are 300 and 6, respectively.
The overall traffic obeys the heavy-tailed distribution in web
search workload as illustrated in [14] and the deadlines of
short flows are randomly distributed between [2s, 6s]. We still
use the 25th percentile deadline (i.e., 3s) to calculate the
switching threshold of queue length for rerouting long flows.
The updating interval of the switching granularity of long
flows and the flowlet timeout are set to 15ms.

We normalize the results of ECMP, RPS, Presto and
LetFlow to that of TLB. Fig. 27 (a) shows that TLB reduces
the AFCT of short flows by 19%-42%, 12-32%, 11-25%,
15-20% with the increasing number of short flows over
ECMP, RPS, Presto and LetFlow, respectively. As shown
in Fig. 27 (b), TLB improves the average throughput of
long flows by 49%-95%, 8-48%, 28-36% over ECMP,
Presto and LetFlow, respectively. With more long flows,
Fig. 28 (a) and (b) show that TLB achieves better performance
compared with the other schemes by adaptively adjusting the
switching granularity of long flows. Due to the inability to
flexibly reroute flows, ECMP and LetFlow suffer from the
long-tailed delay and low link utilization. For RPS and Presto,
the packet reordering degrades their performances especially
under the heavy workload.

To evaluate the system overhead of TLB under the above
two scenarios, we measure the average CPU and memory
utilization introduced by TLB on P4 software switch as
shown in Fig. 29. Specifically, we firstly measure the average
utilizations of CPU and memory every base RTT, and then
calculate the average, maximum and minimum values of
average utilizations of all base RTTs. For ECMP, RPS and
Presto, due to their simple operations at switches, the CPU

Fig. 29. Overhead of the leaf switch.

Fig. 30. Varying updated period of the shortest queue.

utilization is lower than LetFlow and TLB. The short flows
provide only about 20% of datacenter traffic, which incur a
small amount of extra CPU usage. Therefore, TLB does not
incur excessive CPU overhead and brings about negligible
memory utilization compared with other schemes.

To forward the packets of small flows on the path with the
minimum delay, TLB needs to timely update the shortest queue
length. On the one hand, it is the most accurate to update the
shortest queue length as soon as it changes, but it will increase
the CPU overhead. On the other hand, increasing the update
interval will reduce CPU overhead, but TLB cannot obtain the
accurate shortest queue length in time. A proper value of the
updated time interval will make a good compromise between
high accuracy and low overhead.

Next, we conduct new simulation tests to show the deadline
missing ratio of short flows and CPU utilization with varying
updated period of the shortest queue. We use a fixed period
as 0.5×RTT, 1×RTT, 2×RTT, 3×RTT and 4×RTT. In this
simulation, traffic and experimental settings are the default
values. As shown in Fig. 30 (a) and (b), with the increase
of the updated period, although the overheads of CPU and
memory are decreased, TLB is difficult to get the shortest
queue length in time and the queueing delay of short flows
increases, resulting in larger missed deadline ratio. Therefore,
we use base RTT as the updated period of the shortest queue
length to obtain good tradeoff between high accuracy and low
overhead. In the future work, we will continue to improve
TLB by optimizing the updated period.

However, as the compiled target for the data plane behav-
ior, BMv2 software switch still degrades TLB performance
compared with P4 commodity hardware switch. The reason
behind this is as follows. Firstly, the data is read and written
from a virtual Ethernet interface in the software switch,
limiting the packet dequeueing rate from the shared buffer
to the egress pipeline [44]. Secondly, BMv2 is used as
a tool for developing, testing and debugging P4 data and
control planes, the throughput and latency performances of
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BMv2 are significantly worse than that of a production-grade
switch. Moreover, since Mininet is originally designed to emu-
late a software-defined network, the network traffic is strictly
controlled by a centralized controller, which makes Mininet
not a perfect tool for high-speed network emulation [43].
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