
TLB: Traffic-aware Load Balancing with Adaptive Granularity in

Data Center Networks

Jinbin Hu
Central South University

Changsha, China

jinbinhu@csu.edu.cn

Jiawei Huang
Central South University

Changsha, China

jiaweihuang@csu.edu.cn

Wenjun Lv
Central South University

Changsha, China

wenjunlv@csu.edu.cn

Weihe Li
Central South University

Changsha, China

weiheli@csu.edu.cn

Jianxin Wang
Central South University

Changsha, China

jxwang@csu.edu.cn

Tian He
University of Minnesota

Minneapolis, MN, USA

tianhe@umn.edu

ABSTRACT

Modern datacenter topologies typically are multi-rooted trees con-

sisting of multiple paths between any given pair of hosts. Recent

load balancing designs focus on making full use of available paral-

lel paths to provide high bisection bandwidth. However, they are

agnostic to the mixed traffic generated by diverse applications in

data centers and respectively use the same granularity in rerouting

flows regardless of the flow type. Therefore, the short flows suffer

the long-tailed queueing delay and reordering problems, while the

throughputs of long flows are also degraded dramatically due to

low link utilization and packet reordering under the non-adaptive

granularity. To solve these problems, we design a traffic-aware load

balancing (TLB) scheme to adopt different rerouting granularities

for two kinds of flows. Specifically, TLB adaptively adjusts the

switching granularity of long flows according to the load strength

of short ones. Under the heavy load of short flows, the long flows

use large switching granularity to help short ones obtain more op-

portunities in choosing short queues to complete quickly. When the

load strength of short flows is low, the long flows switch paths more

flexibly with small switching granularity to achieve high through-

put. TLB is deployed at the switch, without any modifications on

the end-hosts. The experimental results of NS2 simulations and

Mininet implementation show that TLB significantly reduces the

average flow completion time (AFCT) of short flows by ∼15%-40%

over the state-of-the-art load balancing schemes and achieves the

high throughput for long flows.

CCS CONCEPTS

•Networks→Network architectures;Routing protocols;Data

center networks; Data path algorithms;

KEYWORDS

Data center, TCP, load balancing, multipath

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP 2019, August 5–8, 2019, Kyoto, Japan

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00

https://doi.org/10.1145/3337821.3337866

ACM Reference Format:

Jinbin Hu, Jiawei Huang, Wenjun Lv, Weihe Li, Jianxin Wang, and Tian He.

2019. TLB: Traffic-aware Load Balancing with Adaptive Granularity in Data

Center Networks. In 48th International Conference on Parallel Processing

(ICPP 2019), August 5–8, 2019, Kyoto, Japan. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3337821.3337866

1 INTRODUCTION

With the increasing traffic demands of latency-sensitive and throughput-

oriented applications, modern data centers deploy the multi-rooted

tree networks such as Fat-tree and Clos to provide high bisection

bandwidth via multiple paths between any given pair of hosts [1],

[2], [3], [4]. To achieve better application performance, how to

efficiently balance traffic across available multiple paths becomes

a crucially important issue in large-scale data center networks

(DCNs).

ECMP (Equal Cost Multipath) [5] has been chosen as thede f acto
load balancing scheme to randomly map each flow to one of the

paths by using flow hashing. ECMP is very simple but suffers from

well-known performance problems such as hash collisions and the

inability to reroute flow adaptively. Recently, a lot of better load

balancing designs have emerged in DCN. Random Packet Spraying

(RPS) [6], DRILL [3] and Hermes [2] split flows at the granularity of

packet and choose the next hop for each packet to leverage multiple

paths. Presto [7] picks paths for fixed-sized chunks of data (i.e.,

64KB) to achieve high throughput and reduce packet reordering.

CONGA [1] and LetFlow [8] adopt flowlet switching to provide a

finer granularity without causing much packet reordering.

Unfortunately, each of existing load balancing designs respec-

tively uses the same granularity for different flows regardless of the

flow type. They are agnostic to the traffic feature that the mixed

short and long flows are generated by large-scale applications such

as web search, social networking and retailing system in data cen-

ters [9], [10], [11]. Many works [11], [12], [13] show that the dat-

acenter traffic is heavy-tailed distribution, that is, about 90% of

delay-sensitive short flows with only about 10% of data are coexist-

ing with around 10% of throughput-sensitive long flows providing

around 90% of data.

When the short and long flows are rerouted at the same granu-

larity, the short flows easily experience long-tailed queueing delay

since they are difficult to seize the less-congested paths under the

ICPP 2019, August 5–8, 2019, Kyoto, Japan J. Hu et al.

overwhelming data of long flows, resulting in large flow comple-

tion time (FCT). Moreover, under the non-adaptive granularity, the

long flows suffer the throughput loss due to the low link utiliza-

tion or out-of-order problem when the network traffic changes

dynamically [14], [15].

Therefore, splitting heterogeneous traffic across multiple paths

to achieve low latency for short flows and high throughput for long

flows is important. In this paper, we present a new load balancing

scheme TLB, which differentiates the switching granularity for

different types of flows. When the traffic load of short flows is high,

the long flows are rerouted at the large granularity to leave more

less-congested paths for short flows. In contrast, under the low load

of short flows, the long flows are switched at the small granularity

to improve the link utilization. The short flows pick paths on packet-

level to flexibly seize the fast paths. TLB successfully avoids the long-

tailed queueing delay for short flows, improves the link utilization

for long flows and reduces the packet reordering for both of them.

In summary, our major contributions are:

• We conduct an extensive simulation-based study to explore

the issues of mixed heterogeneous flows rerouted at the

same and non-adaptive granularity in typical load balancing

designs: the short ones experience long-tailed queueing delay

and out-of-order problem, and the long ones suffer the low

link utilization and packet reordering.

• We propose a load balancing scheme TLB, which flexibly

reroutes short and long flows at different granularities by

perceiving the traffic load. Specifically, TLB adaptively ad-

justs the switching granularity for long flows according to

the load strength of short flows and picks paths for short

flows at packet-level to achieve low queueing delay for short

flows and high link utilization for long ones.

• By using both NS2 simulations and Mininet implementation,

we demonstrate that TLB performs remarkably better than

the state-of-the-art load balancing schemes. Especially, TLB

greatly reduces the AFCT by ∼15%-40% for short flows under

heavy workload. Meanwhile, TLB yields up to ∼22% and

∼35% throughput improvement for long flows over Presto

and LetFlow, respectively.

The rest of the paper is organized as follows. In Section 2 and

3, we describe our design motivation and overview, respectively.

In Section 4, we give the model analysis of TLB. We discuss the

implementation in Section 5. In Section 6 and 7, we show the test

results of NS2 simulation and Mininet experiment, respectively. We

present the related works in Section 8 and conclude the paper in

Section 9.

2 DESIGN MOTIVATION

To motivate our design, we illustrate the typical load balancing

schemes and investigate the impact of the switching granularity

on short and long flows.

2.1 Load Balancing with Same Granularity

The existing load balancing designs typically use the following

three switching granularities. In the flow-level schemes, each flow

is transferred on one path without flexible switching. The flowlet-

level schemes reroute flows only when the flowlets emerge. The

packet-level schemes choose path for each packet to make full use

of multiple paths, but easily cause serious packet reordering under

the topology asymmetry.

Q1
L1 L2

Long flow

S1

S3T1Time T2

12

12
S2

2nd Short flow1st Short flow

T3

R1

R3

R2
Q2

Q3

12345

Figure 1: Leaf-spine topology

(a) Flow

12

12

(c) Flowlet

12

Q1

Q2

Q312

(b) Packet

2 Q1

Q2

Q3

1

12

(d) Ideal

11

Q1

Q2

Q322

Q1

Q2

Q3

12345

12345

23

14

5

123

4

5

Figure 2: Queueing under different granularities

We use a simple example to illustrate the issues of typical load

balancing schemes. Fig. 1 shows that 3 senders (S1, S2, S3) and 3

receivers (R1, R2, R3) connect to the corresponding leaf switches.

There are 3 queues (Q1, Q2, Q3) on the corresponding output ports

of the leaf switch L1. S1 continuously sends a long flow to R1 at
time T1, while S2 and S3 respectively send a short flow to R2 and
R3 at time T2 and T3. We use four different granularities to reroute

flows at the leaf switch L1.
Fig. 2 shows that the packets of short and long flows are queued

based on the flow, packet, flowlet and ideal switching granularity,

respectively. Fig. 2 (a) shows that, under the flow-level switching,

one short flow is queued behind the long flow in Q1 though Q3 is

empty, resulting in the large queueing delay and low link utilization.

The packet-based switching is shown in Fig. 2 (b). Although all

packets of short and long flows are evenly spread among multiple

paths, there exist reordering packets and large queueing delay

experienced by short flows. Fig. 2 (c) shows the case of flowlet-based

switching. Three flows are always transmitted in their respective

queues due to insufficient inactivity gap. The inflexible switching

unavoidably leads to the low link utilization. The ideal case is shown

in Fig. 2 (d). At the beginning, the switching granularity of the long

flow and the short ones are 3 and 1, respectively. The long flow

is rerouted at its 4th packet to leave the less-congested paths for

the short flows, which flexibly pick the short queues of Q2 and Q3

per packet to avoid the large queueing delay. When the short flows

are finished, the long flow decreases the switching granularity to

packet to improve its throughput.

TLB: Traffic-aware Load Balancing with Adaptive Granularity in Data Center Networks ICPP 2019, August 5–8, 2019, Kyoto, Japan

packet
flowlet
flow

CD
F

0
0.2
0.4
0.6
0.8
1.0

Queue length (pkts)
0 50 100 150 200 250

(a) Queue length

packet
flowlet
flow

Retransmission
threshold

Pr
[nu

m
du

p.
AC

Ks
 ≥

 x]

0
0.1
0.2
0.3
0.4
0.5

Number of duplicate ACKs
1 2 3 4 5 6 ≥7

(b) Packet reordering

packet
flowlet
flow

CD
F

0
0.2
0.4
0.6
0.8
1.0

FCT (s)
0 0.01 0.02 0.03 0.04

(c) FCT

Figure 3: The impact on short flows

Lin
k u

til
iza

tio
n (

%)

0
20
40
60
80

100

Granularity
packet flowlet flow

(a) Link utilization

Re
or

de
rin

g p
kt

s (
%)

0
20
40
60
80

100

Granularity
packet flowlet flow

(b) Packet reordering

Network capacity

Th
ro

ug
hp

pu
t (

G
bp

s)

0

4

8

12

16

Granularity
packet flowlet flow

(c) Average throughput

Figure 4: The impact on long flows

2.2 Impact of Switching Granularity

We conduct NS2 simulation test to analyze the impact of switching

granularity on the short and long flows. We use a leaf-spine topol-

ogy with 15 equal-cost paths between host pairs. The bottleneck

bandwidth is 1Gbps and the round-trip propagation delay is 100μs.
The switch buffer size is 256 packets. Each sender sends a DCTCP

[11] flow to a receiver via the leaf and spine switches. In our test,

the mixture of 100 short flows with random size of less than 100KB

and 5 long flows larger than 10MB are generated in heavy-tailed

distribution. The flowlet timeout is 150μs [2].
We test the impact of switching granularity on short flows. We

compare the cumulative density function (CDF) of queueing length

experienced by each packet of short flows under three granularities.

As shown in Fig. 3 (a), with the increasing of switching granularity,

the queue length becomes larger. Moreover, due to the growing

queue length caused by long flows, the difference of queue lengths

under flow-level switching is large. Fig. 3 (b) shows the ratio of

TCP duplicate ACKs to demonstrate the packet reordering. Com-

pared with the flow-level and flowlet-level switching, the number

of duplicate ACKs is quite large under the packet-level switching,

causing the spurious packet loss. When the number of duplicate

ACKs reaches the retransmission threshold, the TCP sender cuts

the congestion window. Fig. 3 (c) shows the CDF of flow completion

time. We observe that the tailed delay increases with the increas-

ing of switching granularity due to the larger difference of queue

lengths. Moreover, though obtaining the smallest queue length,

the packet-level switching scheme still does not achieve the best

performance of FCT because of its packet reordering problem.

Next, we examine the impact on long flows. Fig. 4 (a) shows that,

since the long flows provide the overwhelming amount of data in

data centers, the load balancing with large granularity (i.e., flow-

level) causes low link utilization. As shown in Fig. 4 (b), though

splitting the traffic of long flows in a more balanced way, the flow

switching with smaller granularity introduces more out-of-order

packets. Fig. 4 (c) shows that, due to the dilemma between the link

utilization and packet reordering, the long flows only obtain the

average throughput of less than 35% of the network capacity.

2.3 Summary

Our analysis of the impact of load balancing with same switching

granularity on the network performance leads us to conclude that

(i) the short flows experience the large queueing delay as the granu-

larity increases and have more reordering packets as the granularity

decreases, (ii) the long flows suffer the throughput degradation due

to the non-adaptive granularity in rerouting flows. These conclu-

sions motivate us to design and implement a traffic-aware load

balancing scheme with adaptive granularity to achieve good per-

formance for both short and long flows.

3 DESIGN OVERVIEW

In this section, we present an overview of TLB. The key point of

TLB is to adaptively adjust the switching granularity of long flows

and flexibly pick path for each packet of short flows to alleviate

the large queueing delay and packet reordering. Specifically, on the

one hand, the long flows are switched dynamically with adaptive

granularity based on the load strength of short flows, leaving more

ICPP 2019, August 5–8, 2019, Kyoto, Japan J. Hu et al.

less-congested paths for short flows. On the other hand, each packet

of the short flows is routed on the shortest queue to avoid being

blocked by long flows.

SF4SF4

SF4

SF5

SF2 SF1

SF1SF2SF1

SF3

SF5 SF5

LF1

LF1

LF1

Time

Queue1

Queue2

Queue3

LF Long flow SF Short flow

LF1

Figure 5: Queueing process

Fig. 5 shows the queueing process with adaptive switching gran-

ularity for short and long flows. The long flow is dynamically

rerouted across multiple paths to achieve high throughput and

simultaneously reduce the queueing delay for short flows. At the

beginning, the long flow occupies the Queue1 with large switch-

ing granularity, leaving non-congested Queue2 and Queue3 for the
short flows with the packet-level switching granularity. As soon as

the arrival rate of short flows decreases, the long flow is rerouted to

Queue2 and Queue3 with smaller granularity to flexibly make use

of multiple paths. In contrast, under the high load of short flows,

the switching granularity of the long flow adaptively increases after

being rerouted to Queue3. Therefore, the short flows are able to
efficiently and quickly transmit each packet on the paths unused

by the long flow. The architecture of TLB consists of two modules,

which are shown in Fig. 6.

Granularity
Calculator

Switch

Load Strength
Estimation

Input
Traffic

Granularity
Computation

Forwarding
Manager

Packet-level
Path Selection

Path Switching

Output
Queues

Queue1
Queue2
Queue3

Queuen-1
Queuen

Short Flow

Long Flow Path1
Path2
Path3

Pathn-1
Pathn

Figure 6: TLB architecture

1)Granularity Calculator:At the switch, the granularity calcu-

lator consists of two parts: load strength estimation and granularity

computation. Firstly, the load strength of short flows is estimated

according to their arrival rates, and then the switching granularity

of long flows is calculated to guarantee the low queueing delay for

short flows.

Specifically, when the traffic load of the short flows is heavy,

the switching granularity of the long flows should be larger to

ensure that the short flows have more opportunities to use enough

non-congested queues to avoid large queueing delay. Conversely,

with the decrease of the load strength of short flows, the switching

granularity of long flows should be smaller to switch flexibly among

themultiple paths to improve link utilization. At each time interval t
(500μs by default [1]), the granularity computation module updates

the switching granularity periodically. The most important work

is adjusting the switching granularity of long flows to achieve the

good tradeoff between the small flow completion time of short

flows and high throughput of long flows.

2) Forwarding Manager:The forwarding manager is responsi-

ble for switching the short and long flows with different granulari-

ties and selecting the forwarding path according to the real-time

queue lengths of the output ports.

For a long flow, when a new packet arrives at the switch, TLB

reroutes the packet to the shortest queue only if the current queue

length of the long flow reaches the switching threshold calculated

by the granularity computation module. Otherwise, TLB forwards

the new arriving packet to the same queue as the last arrival packet

in the same flow. For short flows, TLB reroutes each arriving packet

to the output port with shortest queue length to reduce queueing

delay caused by the long flows.

4 ADAPTIVE SWITCHING GRANULARITY

In this section, we firstly use the queueing model to theoretically an-

alyze how to calculate the optimal switching granularity to achieve

low delay and good throughput for the short and long flows, re-

spectively. Then we evaluate the accuracy of model analysis by

comparing the numerical and simulation results.

4.1 Model Analysis

The goal of this paper is to develop a simple load balancing scheme

that meets the requirements of both short and long flows. The pri-

mary goal of short flows is reducing their average flow completion

time to meet their deadlines [16], [17], while the long flows require

large throughputs. In our design, the switching granularity is elabo-

rately adjusted to firstly meet the delay requirements (i.e., deadline)

of short flows and then leave as much resources as possible for

long flows to improve their throughputs. To achieve the design

goal, we use the queueing model to calculate the optimal switching

granularity as follows.

Let n denote the number of all equal-cost paths, which includes

nS and nL paths allocated by LTB formS short flows andmL long

flows, respectively. We useC and RTT to denote the bottleneck link

capacity and the round-trip propagation delay, respectively. The

long flows continuously send packets with the maximum window

sizeWL limited by the receiver buffer (64KB by default in Linux)

[18] after quickly entering the congestion avoidance phase. We use

qth to denote the switching threshold of queue length for rerouting

the long flows. The value of qth is updated periodically for each

time interval t . Then according to the amount of data sent by long

flows within the time interval t , we have the following equivalent
relationship as

qth · nL + t ·C · nL =mL ·WL ·
t

RTT
, (1)

Given the total number of paths n=nL+nS , from the Equation

(1), we obtain the number of paths nS allocated for short flows as

nS = n −
mL ·WL · t

RTT

qth + t ·C
. (2)

TLB: Traffic-aware Load Balancing with Adaptive Granularity in Data Center Networks ICPP 2019, August 5–8, 2019, Kyoto, Japan

In data centers, about 90% of TCP flows are less than 100KB [12],

[18], [19], [20]. These short flows mostly finish in the slow-start

phase [18], [21], in which if each flow firstly sends out 2 packets,

then 4, 8, 16, etc. Thus, the number of RTT rounds r to finish transfer
of a short flow with size X bytes is calculated as

r = �log2
X

MSS
� + 1, (3)

where �x� is the largest integer smaller than x andMSS is the size

of a TCP segment.

We use the M/G/1-FCFS (first come first serve) queueing model

[18], [20], [22] to analyze the average waiting time in each queue.

The expected queueing delay for each round of short flows is E[W],

which equals to the average waiting time in each queue because the

short flows are transferred per packet across the multiple paths. The

mean flow completion time of short flows FCTs mainly includes

the queueing and transmission delay, that is

FCTS = E[W] · r +
X

C
, (4)

For aM/G/1-FCFS queue, by using the famous Pollaczek-Khintchine

formula [23], the expected queueing delay E[W] is calculated as

E[W] =
1 +C2

v

2
·

ρ

1 − ρ
· E[S], (5)

where ρ is the load strength, E[S] is the service time of a single

packet with its value as 1
C , andC2

v is the coefficient of variation of

the service time distribution. Since the service rate of each output

port at switches is a constantC , the value ofC2
v is 0. Then, Equation

(5) can be simplified as

E[W] =
ρ

2(1 − ρ)
·
1

C
. (6)

With the average packet arrival rate λ and the service rateC , we

get the load strength as ρ = λ
C .

SincemS short flows, in which the average size of each flow is

X bytes, are transmitted over nS paths with an average completion

time of FCTs , the arrival rate λ of the short flows is calculated as

λ =
mS · X

FCTS · nS
. (7)

Thus, according to the former Equation (2), (4), (6) and (7), we

have the equation about the mean FCT of short flows FCTS as

FCTS =
mS · X · r

C

2[FCTS · (n −
mL ·WL ·

t

RTT

qth+t ·C
) ·C −mS · X]

+
X

C
. (8)

Given that the deadline of each short flow is randomly distributed

between [Dmin , Dmax], we set the associated default deadline D to

the value of 25th percentile in CDF of the statistical flow deadlines

to calculate the switching granularity for long flows. The reason

why the deadline is set to the 25th percentile and the corresponding

experiments are introduced in Section 6.3. To guarantee that the

short flows complete within their associated deadline D, the mean

flow completion time for short flows FCTs should satisfy FCTS ≤ D.
Finally, the switching threshold qth of queue length for rerouting

the long flows is adjusted according to the load strength of short

flows to meet their deadlines. Specifically, qth should satisfy the

following expression

qth ≥
mL ·WL · t

RTT

n −
r · X

C
+2(D−X

C
)·X

2(D−X

C
)·D ·C

·mS

− t ·C . (9)

To leave as much resources as possible for long flows to improve

their throughputs, the long flows are rerouted at theminimum value

ofqth satisfying Equation (9) in our design. Specifically, when a new

packet of a long flow arrives at the switch, TLB makes forwarding

decision based on the real-time queue length of the current output

port of the flow. Once the queue length reaches the minimum

value of qth (i.e., the optimal switching granularity), TLB selects

the shortest queue to reroute the arriving packet. Otherwise, TLB

forwards the arriving packet to the same path as the last arrival

packet in the same flow without switching.

4.2 Model Verification

We evaluate the correctness of the theoretical analysis by NS2 sim-

ulations. We use the leaf-spine topology with 15 equal-cost paths

between any pair of source and destination hosts. The bottleneck

link bandwidth and switch buffer size are 1Gbps and 512 packets,

respectively. We use DCTCP [11] as the underlying transport proto-

col. By default, 3 long flows (>10MB) and 100 short flows (<100KB)

are generated with heavy-tailed distribution. The average size of

short flows is 70KB in this simulation. The deadline of each short

flow is randomly distributed between [5ms, 25ms] as illustrated in

[16]. We set the default deadline D as the value of 25th percentile

deadline (i.e., 10ms), which is also used in the following simulations.

In this test, we measure the minimum value of switching threshold

qth for rerouting the long flows under the condition that no short

flows miss their deadlines in the time interval t of 500μs, which is

the general inactivity gap between two bursts of packets in short

flows [1].

qth-numeric
qth-simulation

of

 p
ac

ke
ts

0

100

200

300

The number of short flows
20 40 60 80 100120140

(a) qth with varyingmS

qth-numeric
qth-simulation

of

 p
ac

ke
ts

0

100

200

300

The number of long flows
1 2 3 4 5

(b) qth with varyingmL

qth-numeric
qth-simulation

of

 p
ac

ke
ts

0

100

200

300

The number of paths
10 12 14 16 18 20

(c) qth with varying n

qth-numeric
qth-simulation

o
f p

ac
ke

ts

0

100

200

300

Deadline (ms)
5 10 15 20 25 30

(d) qth with varying D

Figure 7: Numeric and simulation comparison

ICPP 2019, August 5–8, 2019, Kyoto, Japan J. Hu et al.

Fig. 7 shows the comparison of numerical and simulation results.

The switching threshold qth of queue length for rerouting the long

flows increases as the number of short flows increases as shown

in Fig. 7 (a). With the increasing number of long flows, qth also

increases as shown in Fig. 7 (b), because the long flows need larger

switching granularity under the increasing workload to meet the

delay requirements of short flows. As shown in Fig. 7 (c) and (d), qth
decreases with the increasing of total number of path and deadline,

respectively. In brief, the switching granularities of long flows in

numerical analysis closely follow the corresponding simulation

results.

5 IMPLEMENTATION

We implement TLB with less than 300 lines of code changes at

the switch and make no modifications at the end-hosts. The flow

switching of TLB should meet the deadlines of short flows and

meanwhile improve the throughputs of long flows. There are three

key points in our implementation.

The first key consideration of TLB is how to work well in the

case of lacking deadline information of short flows. Although most

Online Data Intensive (OLDI) datacenter applications such as web

search, social networking, advertisement and retail have strict dead-

line constraints (i.e., 300ms latency) [16], [20], [24], some datacenter

applications such as HTTP chunked-transfer and database access

generate short flows without deadlines [20]. Moreover, various

applications may have different deadline requirements of short

flows. For these applications, TLB needs to make short flows com-

plete quickly even without the deadline information in advance.

We use an alternative method which deduces the specified flow

deadline from the statistics of network traffic. Specifically, we set

the deadline to the value of 25th percentile in CDF of the statistical

flow deadlines. The corresponding experiment results in Section

6.3 show that TLB works well in dark.

Since the switches have no priori knowledge of the flow size, TLB

needs to identify short and long flows when making load balancing

decisions. Without flow size information, TLB distinguishes the

short and long flows according to the number of bytes sent of each

flow. At the beginning, all flows are treated as short flows. Once

the number of received bytes belonging to one flow exceeds the

threshold (i.e., 100KB) [13], [18], [21], [25], the flow is considered

as a long one. Even if the long flows are mistaken for short ones at

the beginning, the negative impact is very small due to few number

of long flows and the small threshold. The experimental results in

Section 6 show that TLB achieves good performance under these

situations.

The last key point is how to accurately measure the current

number of active short and long flows at the switches. TLB uses the

TCP handshake messages, SYN and FIN, to count the number of

flows, which is increased or decreased by one when switch receives

a SYN or FIN message, respectively. However, some flows may be

closed without FIN message or become idle without any packets to

transfer. To avoid unnecessary waste of bandwidth due to the lost

FIN and the idle connection, TLB samples the flows periodically at

the switch. If no packet is received during the sampling interval,

the corresponding flow record is removed from the flow table. The

sampling interval is set to 500μs as same as the updated interval of

switching granularity of long flows [1].

6 SIMULATION EVALUATION

In this section, we firstly examine the basic performance of TLB.

Then we conduct the large-scale simulations to evaluate TLB with

ECMP, RPS, Presto and LetFlow in two typical datacenter applica-

tions. Finally, we evaluate the performance of TLB in the deadline-

agnostic case.

6.1 Basic Performances Test

We conduct NS2 simulations to evaluate the effectiveness of TLB.

The simulation settings are as same as that in Section 4.2. There are

15 parallel paths with 3 long flows (>10MB) and 100 short flows

(<100KB) generated in heavy-tailed distribution. The deadlines of

short flows are randomly distributed between [5ms, 25ms]. The

switching granularity of long flows is updated every 500μs [1].
1)Performance of Short Flows: In our design of TLB, the short

flows are forwarded per packet to the shortest queue in order to

avoid being blocked on the congested paths with long flows. Under

this situation, since the short flows are well balanced, the out-of-

order event happens infrequently due to the similar queueing delay

between the shortest queues.

ECMP
Presto

RPS
LetFlow

TLB

Re
or

de
rin

g
pa

ck
et

s
(%

0

10

20

30

Time (s)
0 0.004 0.008 0.012 0.016 0.020

(a) Reordering packets ratio

ECMP
Presto

RPS
LetFlow

TLB

Q
ue

ue
in

g
de

la
y

(m
s

0

0.1

0.2

0.3

0.4

0.5

Time (s)
0 0.004 0.008 0.012 0.016 0.020

(b) Average queueing delay

Figure 8: Performance of short flows

We measure the instantaneous reordering and queueing delay

of short flows as shown in Fig. 8. The real-time reordering ratios

of short flows in different schemes are compared in Fig. 8 (a). TLB

reduces the number of out-of-order packets significantly compared

with RPS and Presto, because the short and long flows are not

mixed simultaneously on the same path. Fig. 8 (b) compares the

average queueing delay of short flows. Since rerouting the short

flows per packet to the shortest queue without queueing buildup,

TLB achieves the lowest queueing delay all the time.

ECMP
Presto

RPS
LetFlow

TLB

Re
or

de
rin

g
pa

ck
et

s
(%

0

10

20

30

Time (s)
0 0.02 0.04 0.06 0.08

(a) Reordering packets ratio

ECMP
Presto

RPS
LetFlow

TLB

Th
ro

ug
hp

ut
 (G

bp
s

0

1

2

3

Time (s)
0 0.02 0.04 0.06 0.08

(b) Instantaneous throughput

Figure 9: Performance of long flows

TLB: Traffic-aware Load Balancing with Adaptive Granularity in Data Center Networks ICPP 2019, August 5–8, 2019, Kyoto, Japan

ECMP
RPS
Presto
LetFlow
TLB

AF
CT

 (s

0

0.01

0.02

0.03

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a) AFCT of short flows

ECMP
RPS
Presto
LetFlow
TLB

99
th

-i
le

 F
CT

 (s
0

0.02

0.04

0.06

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b) 99th percentile FCT of short flows

ECMP
RPS
Presto
LetFlow
TLB

M
is

se
d

de
ad

lin
es

 (%

0

20

40

60

80

100

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(c) Missed deadlines of short flows

ECMP
RPS
Presto
LetFlow
TLB

Th
ro

ug
hp

ut
 (G

bp
s

0

1

2

3

4

5

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(d) Throughput of long flows

Figure 10: Web search application

ECMP
RPS
Presto
LetFlow
TLB

AF
CT

 (s

0

0.01

0.02

0.03

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a) AFCT of short flows

ECMP
RPS
Presto
LetFlow
TLB

99
th

-i
le

 F
CT

 (s

0

0.02

0.04

0.06

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b) 99th percentile FCT of short flows

ECMP
RPS
Presto
LetFlow
TLB

M
is

se
d

de
ad

lin
es

 (%

0

20

40

60

80

100

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(c) Missed deadlines of short flows

ECMP
RPS
Presto
LetFlow
TLB

Th
ro

ug
hp

ut
 (G

bp
s

0

1

2

3

4

5

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(d) Throughput of long flows

Figure 11: Data mining application

2) Performance of Long Flows: For long flows, instead of be-

ing switched at every moment, they are adaptively rerouted among

the parallel paths. The gain of long flows comes from the good

tradeoff between the out-of-order and low link utilization. From

Fig. 9 (a), we observe that the reordering packets of long flows are

reduced by TLB, because the long flows are not affected by the short

ones in the current queues. As shown in Fig. 9 (b), the instantaneous

throughput of TLB is larger than ECMP, Presto and LetFlow be-

cause the rerouting granularity of long flows swiftly changes with

the varying strength load of short flows. The long flows can make

full use of multiple paths in most of the time since the short flows

only provide less than 10% of the data. This means TLB achieves

good performances of the short and long flows simultaneously by

preventing them from being mixed together.

6.2 Large-scale Test

We conduct the large-scale simulation tests to evaluate TLB’s per-

formance in the typical applications in data centers. We choose

the web search and data mining applications [2], [18], [20], [21]. In

these workloads, the distributions of flow size are heavy-tailed, that

is, more than 90% bytes are provided by around 10% flows. For the

web search workload, about 30% flows are larger than 1MB, while

in data mining scenario there are around less than 5% flows larger

than 35MB [18], [21].

We use the common leaf-spine topology with 8 ToR and 8 core

switches [2]. The whole network has 256 hosts connected by 1Gbps

links. The round-trip propagation delay is 100μs and the switch

buffer size is set to 256 packets. The traffic is generated by randomly

starting flows via a Poisson process between random pair of hosts.

The deadlines of short flows are randomly distributed between [5ms,

25ms]. The switching granularity of long flows is updated every

500μs. We vary the overall workload from 0.1 to 0.8 to thoroughly

evaluate TLB’s performance.

Fig. 10 (a), (b) and Fig. 11 (a), (b) show the average and 99th per-

centile FCT of short flows under the web search and data mining

workloads, respectively. We observe that TLB improves AFCT and

tail FCT significantly compared with the other four schemes, espe-

cially in high workloads. Specifically, in the web search scenario,

TLB reduces AFCT by ∼68%, ∼55%, ∼45% and ∼25% at 0.8 workload

over ECMP, RPS, Presto and LetFlow, respectively. Fig. 10 (c) and

Fig. 11 (c) show the deadline miss ratio of short flows. TLB ensures

that more than 90% short flows meet their deadlines.

These test results demonstrate the advantage of TLB with adap-

tive switching granularity for different kinds of flows. Under the

same switching granularity, when theworkload becomes high, more

mixed flows are queued in the same output ports at the switches,

with the result that more short flows hit the long tail and experience

packet reordering. Especially, since most short flows experience

large queueing delay under large rerouting granularity (e.g., ECMP)

or have lots of reordering packets under small switching granular-

ity (e.g., RPS), the delay performance is degraded. For LetFlow, the

performance is better in the high load because more flowlet gaps

occur for switching under busty and congestion scenario, while

the performance is not good under the low workload due to less

opportunities to reroute flow. Compared with the other schemes,

TLB is able to get enough gain by adaptively adjusting the switch-

ing granularity of long flows according to the arrival rate of short

flows. Therefore, TLB alleviates the impact of queueing delay and

out-of-order problem because of its adaptive rerouting granularity

of short and long flows.

Moreover, we find that short flows in the web search workload

have larger FCT than those in the data mining workload. The reason

ICPP 2019, August 5–8, 2019, Kyoto, Japan J. Hu et al.

TLB-5th

TLB-25th

TLB-50th

TLB-75th

AF
CT

 (s
)

0

0.01

0.02

0.03

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a) AFCT of short flows

TLB-5th

TLB-25th

TLB-50th

TLB-75th

99
th

-i
le

 F
CT

 (s
)

0

0.01

0.02

0.03

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b) 99th percentile FCT of short flows

TLB-5th

TLB-25th

TLB-50th

TLB-75th

M
is

se
d

de
ad

lin
es

 (%
)

0

5

10

15

20

25

30

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(c) Missed deadlines of short flows

TLB-5th
TLB-25th
TLB-50th
TLB-75th

Th
ro
ug
hp
ut
(G
bp
s)

0

1

2

3

4

5

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(d) Throughput of long flows

Figure 12: Performances of deadline-agnostic TLB

is that there are more medium flows with the size from 100KB to

1MB and more long flows in the web search workload, leading to

larger queue length and more packet reordering. While in the data

mining workload, the size between large number of short flows and

a few long flows has obvious boundary, thus resulting in less out-

of-order packets. For LetFlow scheme, however, the performance

in the data mining scenario is worse than that of in the web search

because there are fewer flowlet gaps to change path.

We also test the throughputs of long flows. As shown in Fig.

10 (d) and Fig. 11 (d), the long flows in the schemes with large

rerouting granularity suffer the greater throughput degradation.

Since TLB flexibly adjusts the size of switching granularity for long

flows based on the traffic strength of short flows, it makes good use

of multiple paths and reduces packet reordering, thus achieving

the high throughputs of long flows.

6.3 Deadline-agnostic Case

In some cases, it is hard to get the deadline information of short

flows in advance. Moreover, since some latency-sensitive applica-

tions have various delay requirements, the deadlines of short flows

may be different. For these scenarios without prior deadline knowl-

edge or with different deadlines, we use an alternative method to

protect short flows. Specifically, we set a fixed deadline for all short

flows according to the statistics of deadline distribution. In this test,

the accurate deadline of each short flow is randomly distributed

between [5ms, 25ms] as illustrated in [16]. We specify the 5th , 25th ,

50th and 75th percentile deadlines with the specified values of 5ms,

10ms, 15ms and 20ms, respectively [16]. The simulation topology

and settings are as same as that in the large-scale simulations in

section 6.2. We measure the AFCT, 99th percentile FCT and dead-

line miss ratio of short flows, and the throughputs of long flows

under the web search application scenario.

Fig. 12 shows the performances of deadline-agnostic TLB. As

shown in Fig. 12 (a) and (b), the AFCT and 99th percentile FCT

become larger with the increasing workload. Moreover, the cases

of TLB-5th and TLB-25th obtain the small FCT compared with the

other cases. Fig.12 (c) shows the deadline miss ratios of TLB-5th

and TLB-25th are much lower than the laxer deadline settings. In

Fig. 12 (d), the cases of TLB-25th , TLB-50th and TLB-75th obtain

the almost same throughputs of long flows, which are much higher

than that of TLB-5th case. Therefore, we set the deadline of all short

flows as the 25th percentile of statistical deadlines, which achieves

the best performance in the deadline-agnostic TLB.

7 TESTBED EVALUATION

In this section, we use a realistic testbed to evaluate the applicability

and effectiveness of TLB. The testbed is based on Mininet, which

is a network emulation system with high fidelity on Linux kernel

[18], [21], [26], [27]. The implementation results in [11], [28] show

that Mininet’s behavior is similar to the real hardware elements

[26]. We implement TLB with P4 program [29] to specify how a

switch processes packets.

In this test, we implement the packet processing pipeline of TLB

with P416 1.0. We use Mininet 2.3.0 to create the leaf-spine topology

with 10 equal-cost paths between the leaf and spine switches. We

respectively set the link bandwidth to 20Mbps and delay to 1ms as

recommended in [18], [21]. BMv2 is installed as the software pro-

grammable switch with the buffer size of 256 packets. The default

numbers of short flows less than 100KB and long flows larger than

5MB are 100 and 4, respectively. The overall traffic obeys the heavy-

tailed distribution in web search workload as illustrated in [13],

[18], [21] and the deadlines of short flows are randomly distributed

between [2s, 6s]. We still use the 25th percentile deadline (i.e., 3s)

to calculate the switching threshold of queue length for rerouting

long flows. The updating interval of the switching granularity of

long flows and the flowlet timeout are set to 15ms.

ECMP
Presto
TLB

RPS
LetFlow

N
or

m
al

iz
ed

 A
FC

T

1.0

1.2

1.4

1.6

1.8

2.0

The number of short flows
20 40 60 80 100 120

(a) AFCT of short flows

ECMP
Presto
TLB

RPS
LetFlow

N
or

m
al

iz
ed

 th
r.

pu
t

0

0.5

1.0

1.5

2.0

The number of short flows
20 40 60 80 100 120

(b) Throughput of long flows

Figure 13: Varying the number of short flows

We normalize the results of ECMP, RPS, Presto and LetFlow to

that of TLB. Fig. 13 (a) shows that TLB reduces the AFCT of short

flows by ∼18%-40%, ∼6-24%, ∼5-21%, ∼10-15% with the increasing

number of short flows over ECMP, RPS, Presto and LetFlow, respec-

tively. As shown in Fig. 13 (b), TLB improves the average throughput

of long flows by ∼45%-80%, ∼5-22%, ∼20-35% over ECMP, Presto

and LetFlow, respectively. With more long flows, Fig. 14 (a) and

(b) show that TLB achieves better performance compared with the

other schemes by adaptively adjusting the switching granularity

TLB: Traffic-aware Load Balancing with Adaptive Granularity in Data Center Networks ICPP 2019, August 5–8, 2019, Kyoto, Japan

ECMP
Presto
TLB

RPS
LetFlow

N
or

m
al

iz
ed

 A
FC

T

1.0

1.2

1.4

1.6

1.8

2.0

The number of long flows
1 2 3 4 5

(a) AFCT of short flows

ECMP
Presto
TLB

RPS
LetFlow

N
or

m
al

iz
ed

 th
r.

pu
t

0

0.5

1.0

1.5

2.0

The number of long flows
1 2 3 4 5

(b) Throughput of long flows

Figure 14: Varying the number of long flows

of long flows. Due to the inability to flexibly reroute flows, ECMP

and LetFlow suffer from the long-tailed delay and low link uti-

lization. For RPS and Presto, the packet reordering degrades their

performances especially under the heavy workload.

CPU
Memory

Ut
ili

za
tio

n
(%

)

0

5

10

15

20

ECMP Presto RPS LetFlow TLB

(a) Varying the num. of short flows

CPU
Memory

Ut
ili

za
tio

n
(%

)

0

5

10

15

20

ECMP Presto RPS LetFlow TLB

(b) Varying the num. of long flows

Figure 15: Overhead of the leaf switch

To evaluate the system overhead of TLB under the above two

scenarios, we measure the maximum, minimum and average CPU

and memory utilization ratio at the leaf switch as shown in Fig. 15

(a) and (b), respectively. For ECMP, RPS and Presto, due to their

simple operations at switches, the CPU utilization is very low. Over-

all, since the calculation overhead of switching granularities only

generates a tiny fraction of CPU load, TLB does not incur exces-

sive CPU overhead and brings about negligible memory utilization

compared with other schemes.

ECMP
Presto
TLB

RPS
LetFlow

N
or

m
al

iz
ed

 A
FC

T

1.0

1.5

2.0

2.5

Propagation delay (ms)
1 3 5 7 9

(a) AFCT of short flows

ECMP
Presto
TLB

RPS
LetFlow

N
or

m
al

iz
ed

 th
r.

pu
t

0

0.5

1.0

1.5

2.0

Propagation delay (ms)
1 3 5 7 9

(b) Throughput of long flows

Figure 16: Varying delay in asymmetric scenario

We further explore the performance of TLB in the asymmetric

scenarios. We respectively vary the propagation delay and band-

width of 2 randomly selected leaf-to-spine links [2] to create the

topology asymmetry. In Fig. 16 and Fig. 17, we observe that under

the greater the delay or bandwidth difference, TLB achieves more

performance improvement comparedwith the other schemes except

ECMP
Presto
TLB

RPS
LetFlow

N
or

m
al

iz
ed

 A
FC

T

1.0

1.5

2.0

2.5

Link bandwidth (Mbps)
5 10 15 20 25

(a) AFCT of short flows

ECMP
Presto
TLB

RPS
LetFlow

N
or

m
al

iz
ed

 th
r.

pu
t

0

0.5

1.0

1.5

2.0

Link bandwidth (Mbps)
5 10 15 20 25

(b) Throughput of long flows

Figure 17: Varying bandwidth in asymmetric scenario

LetFlow. Under ECMP, the short and long flows experience large

tailed delay and throughput degradation once being hashed to the

bad paths. For Presto and RPS, the flows suffer the packet reordering

and perform badly due to the delay or bandwidth diversity under

the asymmetric scenarios. Since using flowlet switching, LetFlow is

resilient to network asymmetry and performs well especially under

the high degree of asymmetry. Overall, TLB outperforms all other

schemes because it is able to perceive traffic and flexibly reroutes

short and long flows with different granularities.

8 RELATEDWORKS

The representative of the flow-based load balancing mechanisms

is ECMP, which forwards each flow by using flow hash. To avoid

hash collision in ECMP, Hedera [28] dynamically schedules flows

by a central controller to alleviate hotspots. MicroTE [30] sched-

ules flows by leveraging the partial predictability of traffic matrix

through OpenFlow switches. FlowBender [31] reroutes the flow

when the congestion or link failure is detected. The authors in

[32] propose a congestion-aware algorithm to assign flows to the

available paths online. Some other flow-based multi-path trans-

mission schemes are proposed to schedule heterogeneous flows

in different ways. Karuna [33] balances the interests of mix-flows

with and without deadlines by using rate-control and priority-based

flow scheduling. RepFlow [18] simply replicates each short flow to

reap multi-path diversity in data centers. Freeway [34] adaptively

partitions the transmission paths into low latency paths and high

throughput paths respectively for the short and long flows. In brief,

the above flow-based scheduling schemes have no packet reorder-

ing, but easily lead to the long-tailed latency or low-utilization

problems under the highly dynamic traffic since the long flows are

not able to switch flexibly among multiple paths.

As a flowlet-based load balancing scheme, CONGA [1] uses in-

network congestion feedback to estimate load and then switches

flowlets with the global congestion information to achieve good

performance in data centers. LetFlow [8] randomly reroutes flowlets

to naturally balance the traffic among parallel paths since the flowlet

size changes automatically based on the traffic conditions on their

paths. Flowtune [35] allocates an optimal transmission rate for

each flowlet by using a centralized allocator. Clove [36] picks paths

for flowlets in a weighted round-robin manner at the end-hosts.

However, since the flowlet-based schemes only perform rerouting

when the flowlets emerge, if the flowlet timeout value is large, they

can not always make full use of multiple paths due to rare flowlet

opportunities [2].

ICPP 2019, August 5–8, 2019, Kyoto, Japan J. Hu et al.

Presto [7] performs load balancing at the same granularity of

fixed-size flowcell (i.e., 64KB) for both short and long flows, which

are rerouted in a congestion-oblivious way. Presto needs to use the

TCP offload functionality at the receiver to reassemble the out-of-

order flowcells to prevent the reordered packets from being pushed

up the networking stack.

RPS [6], a per-packet load balancing scheme, randomly sprays

all packets to multiple paths to achieve high network utilization.

MMPTCP [19] randomly spreads the packets of short flows to re-

duce the FCT and transmits the long flows by MPTCP [37] to im-

prove their throughputs. DRILL [3] switches each packet quickly

and flexibly based on the local queue information. However, the

above packet-based load balancing schemes potentially incur re-

ordering especially under the asymmetric topology. Hermes [2]

reroutes flows only when the size sent exceeds a given threshold

and cautiously makes rerouting decisions only when it will be ben-

efit. Compared with Hermes, instead of using ECMP, TLB flexibly

routes short flows to all non-congested paths at packet granularity.

Thus, the short flows avoid being blocked by the long ones and

almost have no packet reordering.

In contrast with the above load balancing schemes with same

switching granularity on different types of flows, our solution TLB

works through a new perspective: TLB adopts different granularities

to switch short and long flows rather than all flows pick paths

with same granularity. The switching granularity of long flows is

adaptively changed based on the traffic load of short flows. Thus,

TLB successfully addresses the long-tailed queueing delay, low

network utilization and packet reordering problems to guarantee

both the low latency of short flows and high throughput of long

flows.

9 CONCLUSION

We proposed a novel traffic-aware adaptive granularity load bal-

ancing design TLB that reduces flow completion time for short

flows and simultaneously improves throughputs for long flows.

Specifically, TLB adaptively adjusts the rerouting granularity of

long flows according to the load strength of short ones. Therefore,

the short flows have more opportunities to make full use of the

less-congested paths unused by long flows. The long flows are also

able to flexibly change the switching granularity to improve their

throughputs. The results of Mininet testbed and large-scale NS2

simulations demonstrate that TLB significantly reduces the AFCT

of short flows by up to around ∼40%, ∼24%, ∼21% and ∼15% under

high workload over ECMP, RPS, Presto and LetFlow, respectively.

The throughput of long flows is remarkably improved by up to

∼80% compared with flow-based load balancing schemes.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Founda-

tion of China (61872387, 61572530, 61872403), CERNET Innovation

Project (Grant No. NGII20170107).

REFERENCES
[1] M. Alizadeh, T. Edsall, S. Dharmapurikar, et al. 2014. CONGA: Distributed

congestion-aware load balancing for datacenters. In Proc. of ACM SIGCOMM.

[2] H. Zhang, J. Zhang, W. Bai, et al. 2017. Resilient datacenter load balancing in the

wild. In Proc. of ACM SIGCOMM.

[3] S. Ghorbani, Z. Yang, P. Godfrey, et al. 2017. DRILL: Micro load balancing for

low-latency data center networks. In Proc. of ACM SIGCOMM.

[4] G. Michelogiannakis, K. Z. Ibrahim, J. Shalf, et al. 2017. Aphid: Hierarchical task

placement to enable a tapered fat tree topology for lower power and cost in hpc

networks. In Proc. of IEEE/ACM CCGrid.

[5] C. Hopps. 2000. Analysis of an equal-costmulti-path algorithm. RFC 2992, Internet

Engineering Task Force.

[6] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. 2013. On the impact of packet

spraying in data center networks. In Proc. of IEEE INFOCOM.

[7] K. He, E. Rozner, K. Agarwal, et al. 2015. Presto: Edge-based load balancing for

fast datacenter networks. In Proc. of ACM SIGCOMM.

[8] E. Vanini, R. Pan, M. Alizadeh, et al. 2017. Let It Flow: Resilient Asymmetric Load

Balancing with Flowlet Switching. In Proc. of USENIX NSDI.

[9] A. Putnam, A. M. Caulfield, E. S. Chung, et al. A reconfigurable fabric for acceler-

ating large-scale datacenter services. ACM SIGARCH Computer Architecture

News 42, 3(2014), 13-24.

[10] L. Zhou, C. Chou, L. N. Bhuyan, et al. 2018. Joint Server and Network Energy

Saving in Data Centers for Latency-Sensitive Applications. In Proc. of IEEE

IPDPS.

[11] M. Alizadeh, A. Greenberg, D. A. Maltz, et al. 2010. Data center tcp (dctcp). In

Proc. of ACM SIGCOMM.

[12] A. Munir, I. A. Qazi, Z. A. Uzmi, et al. 2013. Minimizing flow completion times in

data centers. In Proc. of IEEE INFOCOM.

[13] T. Benson, A. Akella, and D. Maltz. 2010. Network traffic characteristics of data

centers in the wild. In Proc. of ACM IMC.

[14] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. 2015. C3: Cutting tail latency

in cloud data stores via adaptive replica selection. In Proc. of USENIX NSDI.

[15] S. Bak, H. Menon, S. White, et al. 2018. Multi-level load balancing with an inte-

grated runtime approach. In Proc. of IEEE/ACM CCGrid.

[16] B. Vamanan, J. Hasan, and T. N. Vijaykumar. 2012. Deadline-aware datacenter

tcp (d2tcp). In Proc. of ACM SIGCOMM.

[17] K. Zheng and X. Wang. 2017. Dynamic control of flow completion time for power

efficiency of data center networks. In Proc. of IEEE ICDCS.

[18] H. Xu and B. Li. 2014. RepFlow: Minimizing flow completion times with replicated

flows in data centers. In Proc. of IEEE INFOCOM.

[19] M. Kheirkhah, I. Wakeman, G. Parisis. 2016. MMPTCP: A multipath transport

protocol for data centers. In Proc. of IEEE INFOCOM.

[20] L. Chen, K. Chen, W. Bai, and M. Alizadeh. 2016. Scheduling mix-flows in com-

modity datacenters with karuna. In Proc. of ACM SIGCOMM.

[21] J. Hu, J. Huang, J. Lv, et al. 2018. CAPS: Coding-based adaptive packet spraying

to reduce flow completion time in data center. In Proc. of IEEE INFOCOM.

[22] M. Alizadeh, S. Yang, M. Sharif, et al. 2013. pFabric: Minimal near-optimal data-

center transport. In Proc. of ACM SIGCOMM.

[23] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. 2008. Fundamentals of

queueing theory. Wiley-Interscience.

[24] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. 2011. Better never than

late: meeting deadlines in datacenter networks. In Proc. of ACM SIGCOMM.

[25] W. Bai, L. Chen, K. Chen, et al. 2015. Information-Agnostic Flow Scheduling for

Commodity Data Centers. In Proc. of USENIX NSDI.

[26] N Handigol, B. Heller, V. Jeyakumar, et al. 2012. Reproducible network experi-

ments using container-based emulation. In Proc. of ACM CoNEXT.

[27] A. Khurshid, X. Zou, W. Zhou, et al. 2013. Veriflow: Verifying network-wide

invariants in real time. In Proc. of USENIX NSDI.

[28] M. Al-Fares, S. Radhakrishnan, B. Raghavan, et al. 2010. Hedera: Dynamic flow

scheduling for data center networks. In Proc. of USENIX NSDI.

[29] P. Bosshart, D. Daly, G. Gibb, et al. 2014. P4: Programming protocol-independent

packet processors. In Proc. of ACM SIGCOMM Computer Communication Re-

view.

[30] T. Benson, A. Anand, A. Akella, and M. Zhang. 2011. MicroTE: Fine grained traffic

engineering for data centers. In Proc. of ACM CoNEXT.

[31] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene. 2014. Flowbender: Flow-level

adaptive routing for improved latency and throughput in datacenter networks.

In Proc. of ACM CoNEXT.

[32] M. Shafiee and J. Ghaderi. 2016. A simple congestion-aware algorithm for load

balancing in datacenter networks. In Proc. of IEEE INFOCOM.

[33] L. Chen, K. Chen, W. Bai, et al. 2016. Scheduling mix-flows in commodity data-

centers with karuna. In Proc. of ACM SIGCOMM.

[34] W.Wang, Y. Sun, K. Zheng, et al. 2014. Freeway: Adaptively isolating the elephant

and mice flows on different transmission paths. In Proc. of IEEE ICNP.

[35] J. Perry, H. Balakrishnan, and D. Shah. 2017. Flowtune: Flowlet Control for

Datacenter Networks. In Proc. of USENIX NSDI.

[36] N. Katta, A. Ghag, M. Hira, et al. 2017. Clove: Congestion-Aware Load Balancing

at the Virtual Edge. In Proc. of ACM CoNEXT.

[37] C. Raiciu, S. Barre, C. Pluntke, et al. 2011. Improving datacenter performance and

robustness with multipath TCP. In Proc. of ACM SIGCOMM.

[38] M. Mizenmacher. The Power of Two Choices in Randomized Load Balancing.

IEEE Tansactions on Parallel and Distributed Systems 12, 10(2001),1094-1104 .

