
SoK: Fully Homomorphic Encryption Accelerators

Junxue Zhang1,2*, Xiaodian Cheng1*, Liu Yang1,2, Jinbin Hu1, Ximeng Liu3 and Kai Chen1

1iSINGLab, Hong Kong University of Science and Technology 2Clustar 3Fuzhou University

Abstract—Fully Homomorphic Encryption (FHE) is a key
technology enabling privacy-preserving computing. However,
the fundamental challenge of FHE is its inefficiency, due
primarily to the underlying polynomial computations with
high computation complexity and extremely time-consuming
ciphertext maintenance operations. To tackle this challenge,
various FHE accelerators have recently been proposed by
both research and industrial communities. This paper takes
the first initiative to conduct a systematic study on the 11
FHE accelerators — cuHE/cuFHE, nuFHE, HEAT, HEAX,
HEXL, HEXL-FPGA, 100×, F1, CraterLake, BTS, and ARK.
We first make our observations on the evolution trajectory of
these existing FHE accelerators to establish a qualitative con-
nection between them. Then, we perform testbed evaluations
of representative open-source FHE accelerators to provide a
quantitative comparison on them. Finally, with the insights
learned from both qualitative and quantitative studies, we
discuss potential directions to inform the future design and
implementation for FHE accelerators.

1. Introduction
With the increasing concern about data privacy and in-
tegrity, privacy-preserving computing has been adopted in
many real-world applications, e.g., cloud computing [1],
machine learning [2], [3], database search [4], etc. Among
all the privacy-preserving technologies, fully homomorphic
encryption (FHE) emerges as one of the most important
and promising technologies and has been adopted in various
applications [4]–[7]. Specifically, FHE allows performing
arbitrary operations directly over the encrypted data with-
out decryption, making it appealing for privacy-preserving
computation.

Although promising, one fundamental drawback of FHE
is its inefficiency. Compared to plaintext computation, FHE-
enabled computation is orders of magnitude slower, which
restricts its deployment in many performance-critical sys-
tems. To solve this problem, various optimizations have
been proposed. One direction is to improve the efficiency
of the algorithm. For example, modern FHE schemes, such
as BGV [8], BFV [9], and CKKS [10], all support SIMD-
like (i.e., batching) operations [11] to pack many plaintext
messages into one ciphertext to improve the execution ef-
ficiency. Instead of studying these algorithm-level perfor-
mance optimizations, in this paper we focus on the other key
direction — leveraging hardware accelerators to improve the
efficiency of FHE schemes1.

Before introducing FHE accelerators, we first illustrate
what makes FHE slow and the challenges of acceleration.

*. Equal contribution.
1. Note that algorithm optimization and hardware acceleration are com-

plementary, and can be combined to improve the overall performance.

In this paper, we find that the root cause of FHE’s inef-
ficiency is two-fold: underlying polynomial computations
with high computation complexity and two extremely time-
consuming ciphertext maintenance operations. First, most
of FHE’s underlying operations are polynomial operations,
which are much more complex than plaintext computation,
where operands are integers or floating numbers. While
Fast Fourier Transform (FFT)/Number Theoretic Trans-
form (NTT) can be utilized to speed up the polynomial
operations [12] from algorithm-level, further accelerating
NTT/FFT faces challenges in three aspects: high compu-
tation complexity, extremely intensive memory access, and
limited generality (§3.1). Second, compared to plaintext
computation, FHE requires ciphertext maintenance opera-
tions to ensure correctness. Such operations involve over-
complicated computation steps, causing further performance
degradation. Although they are built upon polynomial oper-
ations, fully accelerating ciphertext maintenance operations
is more challenging in terms of the aforementioned three
aspects compared to merely accelerating polynomial opera-
tions (§3.2 and §3.3).

To improve the efficiency of FHE, FHE accelerators are
proposed. Initially, these accelerators rely on features pro-
vided by general hardware. For example, Intel proposed Intel
Homomorphic Encryption Acceleration Library (HEXL) to
leverage AVX-512 instructions for fast NTT operations [13].
nuFHE [14] and 100× [15] used GPU implementations,
i.e., CUDA [16] programs, to accelerate TFHE [17] and
CKKS [10] respectively. While providing notable accel-
eration for FHE schemes, these accelerators are far from
satisfactory.

To further improve the performance of FHE schemes,
people begin to exploit specific-designed hardware accel-
erators. Field Programmable Gate Array (FPGA) is first
used to build circuits to efficiently execute NTT, inverse
NTT (iNTT), and key-switching in FHE schemes [18]–
[24]. These FPGA-based accelerators are affordable but
suffer from intrinsic disadvantages of FPGA itself: limited
programmable resources and low working frequency [25].
Then, to overcome these disadvantages, people are seek-
ing expensive Application-specific Integrated Circuit (ASIC)
technologies to build high-performant FHE accelera-
tors [26]–[29]. While the acceleration ratios of these ASIC-
based accelerators are promising, e.g., ∼ 1000× and ∼
100× NTT throughput compared to FPGA-based and GPU-
based solutions respectively, they are way more expensive.
For instance, developing and taping out a 12nm ASIC
like [27] requires millions of US dollars.

In the recent decade, we have seen an explosive growth
of FHE accelerators [18]–[24], [26]–[30], and expect an
increasingly more active development of FHE accelerators
in the near future. However, we lack a comprehensive and

1

ar
X

iv
:2

21
2.

01
71

3v
1

 [
cs

.C
R

]
 4

 D
ec

 2
02

2

systematic study to shed light on the status quo of existing
FHE accelerators, which could inspire the future design and
implementation of FHE accelerators.

Motivated by this, we take the first initiative to perform
the systematization of knowledge on FHE accelerators. We
first review 11 existing FHE accelerators and make observa-
tions on the evolution trajectory of these works, which es-
tablishes a qualitative connection among them (§4). Then, to
give readers a clear view of how these accelerators perform,
we present a quantitative analysis of them. Specifically,
we use testbed experiments to evaluate the performance of
some representative open-source accelerators, and further
include the statistics from papers of other well-known but
closed-source accelerators to make our results more com-
plete (§5). Finally, based on our qualitative and quantitative
analysis, we discuss the potential future directions, such as
new design tradeoffs, software/hardware co-designs, scaling
methodologies, etc., to inform the future design and imple-
mentation of FHE accelerators (§6).

Along with the paper, we will provide a Docker image
that includes all configurations and scripts for performance
evaluations of all open-sourced FHE accelerators used in
our paper, which can be readily reused by the community.
Related Works: Systematization of knowledge on FHE
library [31] and compiler [32] have already been proposed.
To the best of our knowledge, our paper is the first sys-
tematization of knowledge on FHE accelerators. FHE ac-
celerators are closely related to FHE libraries and com-
pilers. For example, some FHE accelerators are designed
to work with particular FHE libraries, e.g., HEAX chooses
SEAL [33] as its target library to accelerate. Moreover, an
increasing number of FHE accelerators use compilers for a
software/hardware co-design [26]–[29]. However, few FHE
accelerators consider leveraging existing FHE compilers,
such as EVA [34], E3 [35], etc., which, in our opinion,
still leaves dramatic design space for better performance and
flexibility.

2. Fully Homomorphic Encryption
Homomorphic encryption is an encryption scheme that
allows performing arbitrary computation over ciphertexts
without decrypting them. For example, Paillier is an additive
homomorphic encryption scheme thus we can perform addi-
tions over ciphertext [36], while RSA [37] is a multiplicative
homomorphic encryption scheme. In this paper, we are
focusing on fully homomorphic encryption (FHE) schemes2,
which allow both additive and multiplicative homomorphic
operations.

Current FHE schemes can be categorized into word-
wise FHE and bit-wise FHE [38]. Word-wise FHE supports
algebraic operations on word-based (or message-based) en-
crypted data. Moreover, word-wise FHE supports efficient
single-instruction-multiple-data (SIMD) style homomorphic
operations, e.g., performing homomorphic addition and mul-
tiplication over batched plaintext [11]. However, word-wise
FHE is not suitable for evaluating non-polynomial functions,

2. Similar to [32], FHE schemes in our paper include leveled FHE.

Notation Definition

n Degree of a polynomial.
L Multiplicative depth of a fresh ciphertext.
l Current multiplicative depth of a ciphertext.
q Coefficient modulus of plaintext polynomial.
Q Coefficient modulus of ciphertext polynomial.
{qi, i ∈ [0, L]} A set of moduli. Q =

∏L
i=0 qi.

P Special modulus for the keys.
{pi, i ∈ [0, α− 1]} A set of special moduli. P =

∏α−1
i=0 pi.

dnum Decomposition number in key-switching.
α # of special moduli pi. α = b(L+ 1)/dnumc.
{Qj , j ∈ [0, dnum]} A set of modulus factors. Qj =

∏(j+1)α−1
i=jα qi.

∆ Scaling factor.
m Plaintext.
s Secret key.
pk Public key.
ct Ciphertext.
swk Switching key for key-switching.
Dyadic multiplication Element-wise multiplication of polynomials.

TABLE 1: Notations used in this paper.

e.g., sigmoid/relu functions, which are commonly used in
machine learning applications. Examples of word-wise FHE
are CKKS [10], BFV [9], BGV [8], etc. In contrast, bit-
wise FHE supports operations of boolean circuits. As its
name indicates, bit-wise FHE schemes encrypt each bit
of the plaintext and are usually used to evaluate non-
polynomial operations by constructing lookup tables. Bit-
wise FHE schemes do not provide sufficient support for
SIMD-style operations and usually suffer from a higher
degree of ciphertext inflation, which poses a larger chal-
lenge to memory bandwidth. Examples of bit-wise FHE
schemes are TFHE [17] and FHEW [39]. In order to support
real-world privacy-preserving applications, such as privacy-
preserving machine learning, both word-wise and bit-wise
FHE schemes are used together [38], [40].

In this article, we focus on word-wise FHE algo-
rithms constructed over ring learning with errors prob-
lem (RLWE) (e.g., BFV, BGV and CKKS) [41] and bit-
wise FHE algorithm (e.g., TFHE) [42] because they are
practical and widely adopted. Since these FHE schemes
mainly manipulate polynomials over finite fields or torus,
most of the operations to be discussed later are made up
of polynomial computations. In the following sections, we
will show them in detail. Table 1 provides notations and
terms used in this paper, and Figure 1 demonstrates the
relationship of operations of FHE.

2.1. Encoding, Decoding, Encryption & Decryption
Encoding and Decoding: The goal of encoding is to
convert plaintext messages into polynomials for the subse-
quent homomorphic operations. Please note that by packing
a vector of numbers during encoding, specific FHE schemes,
such as BGV and BFV, can naturally support SIMD-style
operations. Conversely, decoding is used to recover plaintext
messages from polynomials.
Encryption: In an asymmetric encryption system, a ci-
phertext ct is generated by obfuscating the plaintext with a

2

FHE Schemes (BFV/BGV/CKKS/TFHE…)

Homomorphic Evaluation
Operations

Encryption, Decrption,
Encoding and Decoding

Ciphertext Maintenance
Operations

Addition Multiplication … Key-switching Bootstrapping …

Polynomial Computations

Contain operations

Intensive Memory AccessHigh Computation Comlexity Limited Generality

Has challenges

Section 3

Section 2

Figure 1: Overview of the operations used in FHE schemes.

public key and noises. For example, in RLWE-based FHE,
the public key is an RLWE instance, pk = (pk0,pk1) =
(as + e, a), generated from the secret key s. The coeffi-
cients of random polynomial a are uniformly sampled from
interval (−Q/2, Q/2], and coefficients of noise polynomial
e are independently sampled from a discrete Gaussian dis-
tribution. The encryption is formulated as

ct = (c0, c1) = v · pk + (∆ ·m+ e1, e0) mod Q, (1)

where m is the plaintext (i.e., encoding result), e0 and e1 are
also noise polynomials, v is a random polynomial with small
coefficients, and ∆ is the scaling factor in some schemes to
control precision.
Decryption: Although different FHE schemes use different
decryption workflows, the common objective is to recover
the plaintext by removing a · s from the ciphertext. As a
result, they share the same core operation in decryption,
which is c0 − c1 · s.
2.2. Homomorphic Evaluation
For word-wise FHE, major homomorphic evaluations in-
clude multiplications, additions, subtractions and permu-
tations, which are sufficient for most applications. Non-
polynomial functions can also be achieved via polynomial
approximation, which covers a large range of applications.
Bit-wise FHE schemes can efficiently evaluate bit opera-
tions, including NOT, AND, NAND, OR and XOR, which
can provide accurate results of non-polynomial functions.

However, homomorphic evaluations lead to two sig-
nificant problems. First, operations such as multiplication
and permutation construct special ciphertexts that cannot be
directly decrypted or used as the input of subsequent opera-
tions. Second, as noise is introduced to secure the ciphertext
in FHE schemes, it gradually grows during FHE operations,
especially in homomorphic multiplications. After the noise
exceeds a threshold, it will impact the correctness of the
decryption. Therefore, ciphertext maintenance operations,
e.g., key-switching, modulus-switching and bootstrapping,
are required in FHE to solve these problems.

2.3. Ciphertext Maintenance
Key-switching: As its name implies, key-switching ho-
momorphically switches the secret key of a ciphertext
while keeping the corresponding plaintext unchanged. More
specifically, ct is the ciphertext of plaintext m, and it can be
decrypted with some special secret key s′. After executing

ct′ = Keyswitch(ct, swk), ciphertext ct′ can be decrypted
with the original secret key s and the corresponding plaintext
is still m. In the equation, swk is a pre-generated public key
called switching key, and it can be considered a ciphertext
of P ·s′ with modulus P ·Q. P is an integer used to control
the scale of noise in key-switching. After certain operations
such as homomorphic multiplication and permutation, key-
switching is leveraged to convert the resulting ciphertexts
back into the original form for the following operations.
Therefore, it is intensively used in FHE schemes.

Modulus Switching and Multiplicative Depth: Generally
speaking, modulus switching refers to the operations that
switch the modulus of a ciphertext. It is largely applied
in FHE schemes to raise or reduce the modulus for dif-
ferent purposes. In particular, RLWE-based FHE schemes
introduce modulus switching to control the proportion of
noise in the ciphertext at the cost of reducing the modulus
Q. When Q is too small to support further operations, the
noise cannot be reduced anymore. Consequently, the size of
modulus Q limits the number of consecutive homomorphic
operations on a freshly encrypted ciphertext. The number is
also called the maximum multiplicative depth (or budget)
L of arithmetics supported by the FHE scheme. Such FHE
schemes are usually called leveled fully homomorphic en-
cryption (leveled FHE) because of the limitations on L. In
this paper, we use the term deep and shallow to describe
applications that consume large multiplicative depth (e.g.,
deep neural networks [43]) and those that only contain a
few multiplications (e.g., database lookup [44]), respec-
tively. Leveled FHE schemes are designed to be efficient
for shallow computations. In deep applications, excessive
Q dramatically reduces the performance. Bootstrapping is
leveraged to refresh the ciphertext and recover the multi-
plicative depth, which we will discuss next.

Bootstrapping: Bootstrapping is a generic term for opera-
tions that refresh a ciphertext in FHE. Their common idea is
to homomorphically recrypt the old ciphertext and generate
a fresh one.

In bit-wise FHE schemes such as TFHE, bootstrapping
is performed in every bit-wise operation. Therefore, multi-
plicative depth is not considered in TFHE. The most time-
consuming part of bootstrapping in TFHE is the homo-
morphic evaluation of a lookup table (LUT). The lookup
process can be implemented through a large number of mul-
tiplexer (MUX) gates. Since the MUX gate mainly consists
of polynomial additions, subtractions and multiplications,
polynomial computations are the major workload in TFHE.

Unlike bit-wise FHE, bootstrapping in RLWE-based
word-wise FHE schemes is more complicated. We tend
to reduce the frequency of bootstrapping and perform one
only when the current multiplicative depth is not enough.
It is worth noting that bootstrapping combines multiple
operations, including many multiplications, thus consuming
considerable multiplicative depth by itself. The concrete
implementations of bootstrapping are not the same in vari-
ous word-wise FHE algorithms, but their workflow can be
summarized into four common steps.

3

Step 1. Modulus Switching: In word-wise FHE, the mul-
tiplicative depth is proportional to the modulus size of
the ciphertext. Therefore, the modulus should be raised if
more multiplications are needed. Given ciphertext ct under
modulus Q, the first step in bootstrapping is to generate
a new ciphertext ct′ encrypting the same plaintext while
extending the modulus to Q′ which satisfies Q′ � Q.
Step 2. CoeffToSlot: Although the modulus of the ciphertext
has been raised, the decryption formula no longer holds
since the coefficients of the plaintext polynomial are not
guaranteed to be bounded by the modulus of the plaintext
during the process of modulus switching. In this case, homo-
morphic evaluations are required to modulo the coefficients.
However, we can only operate on plaintext slots rather than
polynomial coefficients with homomorphic operations in
FHE. To make the coefficients accessible for homomorphic
evaluations, homomorphic encoding should be performed
in advance to put the coefficients of plaintext polynomial
into the plaintext slots. This process is also called Co-
effToSlot [45], [46] or linear transformation [47], [48].
Step 3. Homomorphic Evaluation: Homomorphic evalua-
tions in bootstrapping are introduced to modulo the coeffi-
cients of plaintext polynomial. They contain non-polynomial
functions that can not be directly executed in FHE. For
example, in BGV and BFV, the main operation of this step
is digit extraction, while modulus reduction is the dominant
operation of this step in CKKS. Thus, in modern FHE
implementations, approximation schemes such as Taylor
expansion [45] and optimized Chebyshev method [46], [48]
are used to alternatively evaluate high-degree polynomials.
Step 4. SlotToCoeff: After homomorphic evaluation, the
results in the plaintext slots should be placed back to the
coefficients of the plaintext polynomial. The process is an
inverse operation of CoeffToSlot, which is called SlotToCo-
eff or inverse linear transformation.
2.4. RNS Decomposition
Since word-wise FHE schemes are mainly constructed over
polynomial rings, polynomial operations with large integers
lead to performance degradation [10]. For performance op-
timization, a common strategy is to use Residue Number
System (RNS). RNS decomposes modulus Q and P into the
product of several smaller coprime moduli q0 ·q1 ·· · ··qL and
p0 ·p1 · · · · ·pα, allowed by the Chinese Remainder Theorem
(CRT) [49]. Multiple polynomials with smaller moduli are
used to replace the original polynomial. By applying RNS to
FHE, the coefficient size of polynomials is greatly reduced at
the cost of decomposing each polynomial into multiple ones.
Since the calculation complexity of modular multiplication
is roughly proportional to the square of the coefficients’ bit
width, the overall complexity is reduced.

3. What Make FHE Slow & the Challenges of
Accelerating Them

FHE is an ideal solution for many privacy-preserving ap-
plications since it can simultaneously protect confidential
data and satisfy emerging data protection lawsuits and reg-
ulations [50]. However, FHE still suffers from inefficiency,
which is the focus of the paper. It is worth noting that

previous works have also mentioned several other reasons
restricting the broad adoption of FHE, such as its usage
complexity [32]. However, we believe the inefficiency prob-
lem is still the major roadblock to FHE’s adoption in the
production environment.

In this paper, we have identified the cause of FHE’s
inefficiency as a two-fold problem. First, most of FHE’s
operations are built upon polynomials [8]–[10], [17]. There-
fore, FHE is inefficient since polynomial computations,
specifically polynomial multiplication, are naturally much
more complex than integer/floating number calculations.
Second, two necessary ciphertext maintenance operations,
i.e., key-switching and bootstrapping, are extremely time-
consuming since they involve very complicated computa-
tions. As reported in ARK [29], the two major compo-
nents (i.e., NTT and fast basic conversion, which will be
introduced in detail later) in key-switching take up more
than 80% of the total computation time. According to the
analysis in [27], bootstrapping may take up over 90% of
computation time in an end-to-end FHE task (bootstrapping
consists of key-switching operations).

To solve the problems, FHE accelerators are proposed.
They target improving the performance of FHE schemes
by either leveraging general hardware (SIMD feature pro-
vided by CPUs) or relying on completely specific hard-
ware (FPGA-based circuits). However, it is not easy for
these accelerators to achieve ideal performance. In the
following part, we will first summarize the challenges of
accelerating polynomial computation (specifically, its core
operation: NTT/FFT) into three aspects: high computation
complexity, extremely intensive memory access and lim-
ited generality. Second, we will further demonstrate the
challenges of accelerating key-switching and bootstrapping.
Although these two operations are built upon polynomials
operations, designing an end-to-end acceleration solution for
them is more challenging in terms of the aforementioned
three aspects, which makes it increasingly more difficult to
design efficient FHE accelerators.

3.1. Challenges of Accelerating Polynomial Com-
putation

One widely-adopted algorithm-level optimization for poly-
nomial computation is to leverage Fast Fourier Trans-
form (FFT)/Number Theoretic Transform (NTT) [33], [51].
Thus, accelerating FFT/NTT is essential to all FHE ac-
celerators. In the following part, we will first introduce
how FFT/NTT reduces the time complexity of polynomial
computation and then present the three challenges of further
accelerating FFT/NTT with the current hardware architec-
ture.
3.1.1. FFT/NTT
As discussed, the underlying operations of FHE schemes are
all polynomial operations. Here we first define a polynomial
A as follows:

A(x) =

n−1∑
j=0

ajx
j (2)

4

The degree of a polynomial is the highest power of the
variable x with a non-zero coefficient. Integer n is defined
as the degree-bound of the polynomial, which is strictly
larger than the degree of the polynomial [12]. In many
previous works, n is also called the degree of a polynomial
for simplicity. In this paper, we use the term degree rather
than degree-bound to refer to n.

There are two common representations of a polyno-
mial: coefficient representation and point-value representa-
tion. The polynomials in FHE are naturally stored in the
coefficient representation. However, the time complexity
of multiplication between polynomials in the coefficient
representation is O(n2), while it can be reduced to O(n)
with the point-value representation. A popular approach for
representation conversion is the Fast Fourier Transform,
which leverages the idea of divide-and-conquer to reduce
the conversion time complexity to O(n log n). Note that
FFT only works on complex numbers. For RLWE-based
FHE schemes, we also need Number Theoretic Transform,
which is a generalization of FFT but works over finite fields.
Readers may refer to Appendix A for more details.
3.1.2. High Computation Complexity
Although FFT/NTT has lowered the computation complex-
ity of polynomial multiplications to O(n log n), this opera-
tion still takes the majority of the time, reaching 70% in
some scenarios [29]. Therefore, to further accelerate the
FFT/NTT, people begin to design accelerators to further
improve performance.

Most FFT/NTT implementations are constructed by iter-
atively executing a basic operation called butterfly. The most
well-known butterfly strategies are Cooley-Tukey (CT) but-
terfly [52] (shown in Figure 2) and Gentlemen-Sande (GS)
butterfly [53] (shown in Figure 3). These two strategies
mainly consist of addition, subtraction and multiplication
operations. CT butterfly is designed to execute the Equation
8 and 10 in Appendix A by reusing the multiplication result.
GS butterfly exploits a similar structure and can be used as
the reverse operation of CT butterfly in applications.

Based on the butterfly strategies, the FFT/NTT algorithm
is divided into log n stages with n/2 butterflies in each
stage, as shown in Figure 4, which presents an example
of FFT with n = 8. The input of the butterflies in FFT/NTT
is the output of specific ones in the previous stage, which
leads to a strict dependency chain from the first to the last
stage. Data dependency among butterflies in adjacent stages
continuously changes as the calculation proceeds.

To accelerate FFT/NTT computation, the first attempt is
to leverage data parallelism since data parallelism is widely
supported by general hardware, such as CPU (through
SIMD instructions) and GPU (through CUDA program-
ming). However, data parallelism is only efficient when there
are no dependencies among all pieces of data. Consequently,
the data parallelism cannot be directly applied to FFT/NTT
due to the strict data dependencies among adjacent butterfly
operations.

Another accelerating approach is to utilize pipeline
parallelism, which can be implemented by designing cus-
tomized hardware circuits via FPGA or ASIC. However,

as Figure 4 indicates, to build a pipeline with large n,
(n log n)/2 separate butterflies should be implemented,
which will consume too many hardware resources, caus-
ing either impossible circuits placement with FPGA or
extremely expensive costs with ASIC. Moreover, data move-
ment within such a large pipeline is almost impossible with
state-of-the-art hardware technologies.

Therefore, naive data and pipeline parallelism are chal-
lenging. There are two possible solutions. First, it is possible
to make FFT/NTT partly parallelizable based on the 4-
step FFT/NTT algorithm [54]. Readers may refer to the
Appendix B for a detailed introduction to 4-step FFT/NTT.
The second solution is inter-polynomial parallelism, execut-
ing operations over multiple polynomials concurrently with
sufficient hardware resources. The scheme is called residue-
polynomial-level parallelism (rPLP), and we will discuss it
in detail in §3.2.
3.1.3. Intensive Memory Access
Recent works have observed that overhead in memory access
has become an essential bottleneck even if the acceler-
ator is designed with modern hardware, such as FPGA
or ASIC [26]–[29]. For example, let’s consider a chip
operating at 1GHz and there’re 40960 on-chip modular
multiplication units. The chip is connected to the latest
HBM3 with a bandwidth of 3TB/s. Assume that the chip
is executing CoeffToSlot with bootstrappable parameters
(n = 216, L = 23,dnum = 4). All the calculation units
are concurrently working and the bandwidth of the HBM3
is fully utilized. It only takes the chip 0.18ms to finish all the
multiplications, while it takes the HBM3 2.1ms (11.7× of
computation time) to load the data used in CoeffToSlot [29].

The root cause of the problem is data inflation. Com-
pared to plaintext computation, data size in polynomial
operations largely increases for the following reasons.

In FFT/NTT, a group of pre-computed parameters called
twiddle factors is mandatory for the calculations, i.e., ωkn
in Figure 2 and Figure 3. Because the twiddle factors
can be reused throughout an entire FHE job, it is usually
cached in the on-chip memory (fast but extremely limited)
of the accelerator to achieve high performance. For FFT, the
number of twiddle factors is less than the number of input
coefficients. However, for NTT, one group of twiddle factors
is required for each modulus in RNS, which results in data
inflation. In addition to the twiddle factors, the temporary
results generated by each stage in FFT/NTT also place a
high demand on the memory size.

As mentioned in §3.1.2, the 4-step FFT/NTT algorithm
makes it possible to process a single FFT or NTT in par-
allel. Therefore, it is common to leverage this algorithm
in recent designs. However, the 4-step FFT/NTT requires
more pre-computed parameters than the original FFT/NTT
algorithm (shown in Appendix B.2). Although the algorithm
greatly reduces the number of twiddle factors, it introduces
n additional pre-computed numbers called twisting factors
for each RNS modulus [54]. Therefore, the memory space
requirement for pre-computed numbers is even more strict
after applying the algorithm optimization.

5

𝐴!
"

𝐴!
#

𝜔$!

𝐴! = 𝐴!
" +𝜔$!𝐴!

[#]

𝐴!'($/*) = 𝐴!
" −𝜔$!𝐴!

[#]

+

-!

Figure 2: Cooley-Tukey butterfly

𝑎!

𝑎!"($/&)
𝜔$!

𝑎!
(= 𝑎! + 𝑎!"($/&)

𝑎!
) = 𝑎! − 𝑎!"($/&) ⋅ 𝜔$!

+

- !

Figure 3: Gentlemen-Sande butterfly

𝑎!

𝑎"

𝑎#

𝑎$

𝑎%

𝑎&

𝑎'

𝑎(

𝐴!

𝐴%

𝐴#

𝐴'

𝐴"

𝐴&

𝐴$

𝐴(

!
𝜔!"

!
𝜔!"

!
𝜔!"

!
𝜔!"

!
𝜔!#

!
𝜔!#

!
𝜔!"

!
𝜔!"

!
𝜔!#

!
𝜔!"

!
𝜔!$

!
𝜔!%

+

+

+

+

−

−

−

−

+

+

−

−

+

+

−

−

+

−

+

−

+

−

+

−

First stage Second stage Third stage

Figure 4: Workflow of NTT/FFT with n = 8 with CT butterfly

Furthermore, due to the complex data dependency and
large data size, read/write requests over the same block
of memory from different butterflies are common. Such
conflicts cause either large design complexity or severe
performance degradation.
3.1.4. Limited Generality
Degree n of the polynomials are variant in different scenar-
ios. For example, n is related to security level and multi-
plicative depth. However, it is challenging for these specific-
designed hardware accelerators, such as FPGA and ASIC,
to consistently provide optimal acceleration when n varies.
The reason is as follows. There are (n log n)/2 butterflies
in the entire FFT/NTT pipeline. When n becomes larger,
the consumption of hardware resources greatly increases.
Furthermore, different n leads to completely different data
dependencies in FFT/NTT. Static circuit connections among
butterflies cannot satisfy the requirement.

If we use a fixed n to design the pipeline, the design
suffers from resource underutilization or non-optimal per-
formance. For example, when an architecture designed for
a certain degree is directly applied to accelerate FFT/NTT
with a relatively larger degree, the calculation fails to
achieve full pipelining because of insufficient multipliers.
In contrast, adapting the design to scenarios where the
degree is relatively smaller results in a tremendous waste
of computing resources in the redundant stages.
3.2. Challenges of Accelerating Key-switching
As mentioned in §2.3, key-switching is widely used for ci-
phertext conversion in homomorphic multiplication and per-
mutation. The main challenge of accelerating key-switching
is achieving generality, which we will demonstrate in detail
in the following parts.

The key-switching algorithms used in state-of-the-art ac-
celerators can be considered as different variants of the same
algorithm, i.e., generalized key-switching [46], [55]. Based
on RNS decomposition, the modulus Q is factorized into
L+1 coprime moduli q0, q1, . . . , and qL. In generalized key-
switching, given a fixed integer parameter dnum ∈ [1, L+1]
which stands for decomposition number, the moduli are
grouped into dnum blocks and the partial production of
moduli in each block is denoted as Qj =

∏(j+1)α−1
i=jα qi,

where j ∈ [0,dnum) and α = b(L + 1)/dnumc. Then
the key-switching can be decomposed into calculations in
each block, followed by the accumulation of results from
different blocks. Each block’s calculations are also called
fast basis conversion, mainly consisting of multiplications
and additions, while the major operation in accumulation is
NTT. The selection of dnum greatly impacts the memory
requirement and calculation complexity of key-switching.
As dnum increases from 1 to L + 1, the overall memory
consumption in key-switching and the workload for NTT
strictly grows, while the workload for basis conversion
decreases. The overall calculation workload also depends on
the selection of other parameters, especially multiplicative
depth L. Therefore, different dnums are suitable for various
scenarios.

The variation of dnum poses generality challenges to
the accelerators, especially for those with specific-designed
circuits due to the high complexity of changing them. Since
the proportion of different operations in the total workload
is not static, the first challenge for the designers is to decide
how to distribute the limited resources in the accelerator to
different calculation units (i.e., NTT and basis conversion) to
achieve balanced throughput for all the typical applications.

The second generality problem is how to decide the
parallelism scheme. Since NTT and fast basis conversion
require different schemes to be efficient, for the accelerators,
how to parallel process polynomials is impacted by the
relative workload of NTT and basis conversion, which is rel-
evant to dnum. The parallelism schemes adopted by existing
works can be categorized into rPLP (residue-polynomial-
level parallelism) and CLP (coefficient-level parallelism),
two different polynomial access patterns for the acceler-
ators to achieve high parallelism. Under RNS representa-
tion (§2.4), we need to perform concurrent operations on
multiple residue polynomials. With rPLP, each processor in
the accelerator individually executes operations over a single
residue polynomial. The parallelism is achieved by distribut-
ing multiple residue polynomials to different processors.
With CLP, multiple processors in the accelerator collabo-
ratively execute operations for a single residue polynomial,
and n coefficients in the same polynomial are distributed to

6

different processors. There is no superior or inferior of these
two schemes in terms of coefficient-wise operations like
polynomial addition and dyadic multiplication. However,
CLP introduces global data communication across different
processors for NTT. Similarly, rPLP leads to extra data
exchange in basis conversion. Therefore, both schemes may
cause performance degradation in certain operations.

In key-switching, both basis conversion and NTT are
dominant. The designer may compare the relative workload
of basis conversion and NTT in the targeted applications
to choose between CLP and rPLP. For example, when a
relatively smaller dnum is chosen, which increases the
importance of basis conversion, CLP is a preferred choice.
Nevertheless, generality remains to be a challenge.

3.3. Challenges of Accelerating Bootstrapping
In this section, we mainly analyze bootstrapping in word-
wise FHE since it is more complicated than that in bit-wise
FHE (details in §2.3), and is the focus of the latest FHE
accelerators [27]–[29]. Bootstrapping in word-wise FHE
consists of four complicated steps, making it the most time-
consuming operation in word-wise FHE. The impressive
overhead comes from the large consumption of multiplica-
tive depth and enormous homomorphic permutations, which
both lead to extremely high computation complexity and
memory access.
Large Consumption of Multiplicative Depth: As reported
in [27], bootstrapping in the LSTM benchmark consumes
61% of the maximum multiplicative depth (35 out of 57
levels). The significant consumption of multiplicative depth
mainly comes from the approximation schemes applied in
bootstrapping, which include deep calculations.

Therefore, for FHE applications requiring unbounded
multiplication depth, such as deep learning training, the
maximum multiplicative depth L must be large enough to
support bootstrapping. Furthermore, since bootstrapping in-
volves dramatic overhead, we should further increase depth
L to use more multiplicative depth to perform application
computations before bootstrapping, thus reducing the fre-
quency of bootstrapping during the whole calculation to
guarantee the effectiveness of an application.

Consequently, the growth of depth L leads to a larger
modulus Q, and the degree of polynomial n should be raised
accordingly to reach a certain security level of RLWE [56].
Large modulus and degree of polynomial lead to the growing
size of ciphertexts and keys, thus significantly increasing the
workload of polynomial calculations and memory consump-
tion.
Enormous Homomorphic Permutations: The second and
fourth steps of bootstrapping, CoeffToSlot and SlotToCoeff,
suffer from the high computational overhead of homomor-
phic operations, especially when the plaintext messages are
densely packed in the ciphertext. In the implementation
of [48], CoeffToSlot on a ciphertext, which packs 4096
plaintext messages, requires ∼ 30 homomorphic permuta-
tions, leading to large computation complexity. Moreover,
homomorphic permutations introduce massive additional
switching keys, dramatically inflating the memory space

needed and increasing the bandwidth requirements. In detail,
the size of a single switching key is about dnum× the size
of a ciphertext, and permutations aiming at different rotation
steps need distinct keys, which introduce ignorable memory
storage and access overhead. For example, according to
the analysis in [29], with n = 215, 40 different switching
keys should be pre-computed and stored in preparation for
permutations in the linear transformation of bootstrapping.

4. FHE Accelerators
In this section, we will first comprehensively review the ex-
isting FHE accelerators in chronological order (§4.1). Then,
we will summarize their evolution trajectory to address par-
ticular challenges mentioned in the previous section, which
establishes a qualitative connection among them (§4.2).

Table 2 provides an overview of FHE accelerators by
demonstrating the hardware leveraged, the data parallelism
schemes used, and the features of these FHE accelerators.
We also make the following explanations to make it clear.
First, the software/hardware co-design denotes whether the
design leverages software’s flexibility and hardware’s ef-
ficiency to properly distribute and schedule the workload
in the accelerator. In particular, we regard co-design is
absent in all CPU-based and GPU-based works, which only
include software design based on off-the-shelf hardware
architectures. Second, similar to previous works [32], the
FHE schemes are grouped into families of related schemes.
For example, BFV stands for BFV [9]/BGV [8] and TFHE
stands for TFHE [17]/GSW [42]. Third, among the different
features of the accelerators, we mainly focus on whether
they are programmable and bootstrappable. Programmable
refers to the accelerator’s ability to support a variety of
cryptographic parameters without hardware architecture re-
configuration. Bootstrappable means it is possible to execute
bootstrapping and achieve unlimited FHE operations with
the accelerator. The half circle () here represents that the
accelerator supports bootstrapping, but the performance is
far from meeting practical requirements.

Worth noting, although the FHE accelerators rely on the
acceleration of polynomial computations, such as NTT, it
is not reasonable to categorize works that only accelerate
these basic modules as FHE accelerators. For example, FFT
accelerators are commonly applied in other fields, such as
signal processing, but most of them cannot be directly used
to boost the performance of FHE schemes. Our survey will
not cover them but focus on accelerators that explicitly
improve the efficiency of FHE schemes.
4.1. Survey of Existing FHE Accelerators
4.1.1. cuHE/cuFHE
CUDA Homomorphic Encryption Library (cuHE) was pro-
posed by Dai et al. in 2015 [57], [59]. cuHE uses GPU
for acceleration and provides CUDA implementation of
NTT and CRT. CUDA-accelerated Fully Homomorphic En-
cryption Library (cuFHE) was proposed by Dai et al. in
2018 [58]. cuFHE leverages implementations of cuHE to
boost the performance of TFHE [17]. Both cuHE and cuFHE
are open-sourced standalone acceleration libraries [57], [58]
and do not provide official integration with FHE libraries.

7

Name Hardware
Target

Software/Hardware
Co-design

Polynomial
Parallelism

Supported Schemes Supported Features Open-
sourceBFV CKKS TFHE Programmable Bootstrappable

cuHE [57] GPU rPLP
cuFHE [58] GPU rPLP
nuFHE [14] GPU rPLP
HEAT [30] FPGA rPLP
HEAX [19] FPGA rPLP
HEXL [13] CPU rPLP
HEXL-FPGA [18] FPGA rPLP
100× [15] GPU rPLP + CLP
F1 [26] ASIC rPLP
CraterLake [27] ASIC CLP
BTS [28] ASIC CLP
ARK [29] ASIC rPLP + CLP

TABLE 2: Overview of all FHE accelerators.
However, they only support accelerating polynomial oper-
ations with NTT, while an FFT-based implementation may
achieve higher performance for TFHE. Moreover, besides
limited functions, cuFHE adopts fixed cryptographic param-
eters, which cannot be configured to achieve high generality.
4.1.2. nuFHE
GPU-powered Torus FHE implementation (nuFHE)
was launched by NuCypher in 2018 [14]. Similar to
cuHE/cuFHE, nuFHE also adopts GPU to accelerate
FHE schemes. However, different from them, nuFHE
provides either FFT or NTT to improve performance.
nuFHE is an open-source standalone library [14] and
provides Python APIs. With FFT, nuFHE achieves better
performance compared with cuFHE. But it shares the
similar disadvantage of limited generality.
4.1.3. HEAT
HEAT was proposed by Roy et al. in 2019 [30]. Different
from cuHE, cuFHE, nuFHE, HEAT targets accelerating a
word-wise FHE scheme: BFV. Moreover, besides general
hardware which has been used in previous works, HEAT
further leverages FPGA to achieve a more flexible hardware
design. Thus, HEAT utilized a heterogeneous ARM-FPGA
co-designed architecture implemented on Xilinx ZCU102
Evaluation Kit [60]. The authors further migrated HEAT
to the f1 instance of Amazon AWS in 2020 [61]. Both
implementations are open-sourced. The implementation of
HEAT on ZCU102 comprises several hardware coprocessors
on FPGA and a multi-core (4 cores) ARM processor. The
parallel coprocessors can efficiently execute primitive opera-
tions in BFV, including addition, subtraction, multiplication,
modulus switching, and NTT. The ARM cores control the
coprocessors’ workflow and manage the network connection
to the applications. By using the software as a workflow
controller, HEAT can perform polynomial arithmetics and
homomorphic operations like key-switching in BFV by com-
bining different primitive operation units.

Considering the limited on-chip memory (BRAM/U-
RAM) and calculation units (DSP), it is impossible to im-
plement a fully pipelined NTT processor on FPGA. Instead,
the authors instantiated two CT butterfly units for each
NTT core and accomplished the NTT by reusing them.
This design is a compromise solution due to limited re-
sources, thus inevitably leading to non-optimal performance.
Another problem caused by resource constraints is the rel-

atively smaller polynomial degree. The polynomial degree
supported by HEAT is 4096, which does not fulfill most
practical requirements and significantly limits its generality.
4.1.4. HEAX
HEAX was proposed by Microsoft in 2020 [19]. It provides
a highly performant hardware architecture to accelerate the
operations of CKKS. HEAX is not an open-source project.
The acceleration foundations of HEAX are the primitive
modules: NTT and multiplication modules. Each module
consists of multiple calculation cores, which could be ad-
justed to match the required throughput.

Different from HEAT, which depends on the software
to manipulate hardware primitive operations (e.g., NTT and
multiplication) when implementing key-switching, HEAX
implements a specific key-switching module to minimize
the overhead of software and hardware interaction. Fol-
lowing the workflow of key-switching, the key-switching
module instantiates multiple primitive modules and BRAMs
to construct the pipeline. The modules can be adjusted to
balance the throughput in the pipeline based on specific
cryptographic parameters.

However, the adjustment of HEAX is accomplished by
physically modifying the modules. The FPGA has to be
reconfigured to adapt to different cryptographic parameters,
which limits the generality of the design.
4.1.5. HEXL
Unlike previous works relying on specific hardware devices,
such as GPU and FPGA, Intel proposed Intel Homomor-
phic Encryption Acceleration Library (HEXL) in 2021 [13].
HEXL exploits the SIMD features provided by Intel CPUs,
which are easily accessible, to provide plug-and-play accel-
eration capacities for FHE. HEXL has been integrated with
PALISADE [51], Microsoft SEAL [33] and HElib [62] by
replacing the underlying arithmetic implementations. It is
open-sourced, and the code is hosted on Github [63].

With the single-threaded implementation of primitive
operations, including NTT/iNTT and dyadic multiplica-
tion, based on the Intel AVX-512/AVX512IFMA instruc-
tions [64], HEXL reaches high single-core acceleration.
Since HEXL is thread-safe, users can achieve better per-
formance by paralleling different operations with multi-
threading. However, due to architecture deficiency, the over-
all performance largely degrades when there are many
threads. For example, too many threads with SIMD cause

8

significant heat dissipation. As a result, core frequency is
dramatically reduced when reaching the TDP [65]. More-
over, similar to the CPU-based acceleration libraries in other
domains, HEXL also suffers from slow memory access,
further reducing its overall performance.
4.1.6. HEXL-FPGA
To compensate for the disadvantages of HEXL, Intel further
proposed HEXL-FPGA in 2021 [18]. HEXL-FPGA offers
the HLS-based (high level synthesis) implementation of
NTT/iNTT, multiplication, and key-switching. Since HEXL-
FPGA is open-sourced, users can compile each of the func-
tions into an individual bitstream and program the FPGA
device. HEXL-FPGA can be integrated with aforementioned
HEXL to accelerate corresponding FHE libraries. HEXL-
FPGA is open-sourced and under active development [18].

However, there are inherent problems with HLS-based
solutions. HLS designs are written in high-level language
and rely on the compiler to convert the codes into hardware
design. Due to the essential difference between the hardware
and software, the compiling process may lead to redundant
resource consumption and complex workflow synchroniza-
tion [66], thus leading to suboptimal performance. There-
fore, it’s hard for HEXL-FPGA to fully utilize the advan-
tages of FPGA. Moreover, HEXL-FPGA only supports a
limited range of cryptographic parameters, which will be
demonstrated in §5.2.
4.1.7. 100×
100× was proposed by Jung et al. in 2021 [15]. It pro-
vides higher acceleration of CKKS than previous works
(i.e., HEXL-FPGA and HEAX) with the powerful V100
GPU [67]. The reason is that V100 has more hardware
resources due to better semiconductor manufacturing pro-
cesses and works at a much higher frequency than the FP-
GAs adopted in previous works. 100× introduces memory-
centric optimizations to increase end-to-end performance
and achieves over 100× acceleration ratio compared to the
single-thread CPU implementation.

The implementation of NTT in 100× is built based on
the hierarchical approach in [68]. Its basic idea follows
the 4-step FFT/NTT algorithm [54]. The implementation of
NTT is divided into two separate kernels, making it possible
to cache all input data in the shared memory. Moreover, due
to the limited size of registers in GPU, both kernels further
decompose the NTT based on a generalized version of the 4-
step FFT/NTT algorithm. In addition to the decomposition,
schemes including coalesced memory access and on-the-
fly twiddle factors generation are leveraged to decrease the
overhead in memory access.

However, although the memory accesses in the basic
operations have been optimized, the end-to-end performance
of a FHE task is still bottlenecked by the bandwidth of
the main memory. To relieve the bottleneck, the authors
of 100× tend to fuse multiple kernels into a single kernel,
which allows the data cached on the chip to be reused by a
series of consecutive operations and reduces global memory
accesses. Nevertheless, since GPU’s architecture is designed
for calculations between small numbers (e.g., FP16), it does

not offer large on-chip memory. As a result, the intensive
memory access still degrades the performance of 100×.

4.1.8. F1

To solve the problems of insufficient resources (e.g., the
FPGA-based ones) and unsuitable fixed architecture (e.g.,
the CPU or GPU-based ones), recent works have shifted
to explore the potential of application-specific integrated
circuits (ASICs). Following this trend, F1 was proposed
by Feldmann et al. in 2021 [26]. To pursue more practical
acceleration for FHE schemes, F1 is the first programmable
FHE accelerator with a dedicated architecture, which de-
notes it can support several FHE schemes with a large range
of cryptographic parameters. F1 is not open-sourced.

At its core, F1 implements 16 computation clusters,
each containing several primitive function units (FU), in-
cluding NTT, modular multiplication, modular addition,
and automorphism. Different units can compose high-level
FHE operations such as key-switching. All the FUs are
pipelined and vectorized to process 128 elements in each
cycle. Therefore, polynomials with degrees that are mul-
tiples of 128 can be handled by sequentially feeding the
operands to the pipeline. Specifically, to implement NTT
with the 128-element processor, F1 leverages the 4-step
FFT/NTT algorithm [54] to decompose a NTT into multiple
vectorized operations with much fewer input elements. F1
tries to minimize data movement overhead by proposing
a hierarchical storage system. The off-chip high-bandwidth
memory (HBM) is the global memory that directly interacts
with the CPU server. A 64MB scratchpad built on 16 banks
of SRAM is designed as the on-chip cache and fetches data
from HBM. The computation clusters communicate with the
scratchpad and store the data used for the current operation
in the limited vector registers. The communication between
the scratchpad and clusters depends on a complex fully
connected network (three 16× 16 crossbars).

The design of F1 has three main problems. First, the per-
formance of F1 highly relies on sufficient parallelism among
16 clusters and efficient data movement in the accelerator,
which places a high demand on the software compiler for
operation scheduling. Considering that FHE computations
vary significantly in terms of different workflows and dif-
ferent parameter settings, the compiler is complicated. How-
ever, F1 does not provide many details about its compiler.
The second problem is that F1 uses a fixed key-switching
algorithm (generalized key-switching with dnum = L+ 1).
If the multiplicative depth L of ciphertexts is high, key-
switching is extremely slow. Last, F1 only supports non-
packed bootstrapping [45], which only works for ciphertext
with a single number packed in the polynomial and is far
from practical in real-world applications. The reason is that
the maximum degree of polynomial that F1 supports via the
4-step FFT/NTT algorithm is 16384, which is too small for
F1 to execute fully packed bootstrapping [69] under 80-bit
or 128-bit security level of RLWE. Without efficient boot-
strapping, F1 struggles to evaluate deep arithmetic functions.

9

4.1.9. CraterLake
CraterLake was proposed by Samardzic et al. in 2022 [27].
It is not an open-source project. CraterLake is a follow-
up to F1 and targets unbounded-depth homomorphic multi-
plications. Consequently, CraterLake uses the fully packed
bootstrapping [69] to refresh the multiplicative depth of
ciphertexts. To balance the frequency of bootstrapping and
the size of ciphertexts, the authors of CraterLake chose the
number of multipliers required per homomorphic multipli-
cation as the criterion to evaluate the overall computational
complexity of an FHE program. Moreover, the authors fol-
lowed the idea of the vectorized unit in F1 and logically
designed the whole accelerator as a single 2048-element
vectorized processor to handle the large ciphertext, which
requires the maximum degree of polynomial and multi-
plicative depth to be 65536 and 60 respectively. However,
such a design can not be naively implemented on ASIC
considering the complex combinational and sequential logic
circuits. Thus, in CraterLake, the 2048-element processor is
physically composed of eight 256-element groups.

Similar to F1 [26], CraterLake implements several func-
tional units (FU) in each 256-element group. The difference
is the two additional FUs in CraterLake, i.e., Change-RNS-
base (CRB) and switching key generator (KSHGen), and
both units are introduced to further optimize key-switching.
The CRB unit, which mainly executes modular multipli-
cation and modular summation, is specifically designed to
accelerate fast basis conversion when dnum is relatively
small (e.g., dnum = 1). To save additional memory space,
the KSHGen unit generates switching keys on the fly, which
were pre-computed and cached in the device memory in
previous works, such as F1 [26] and HEAX [19].

Another major difference between CraterLake and pre-
vious works is that CraterLake adopts CLP as the data
parallelism scheme rather than rPLP due to the increasing
workload of fast basis conversion. With the CLP scheme,
CraterLake only processes one polynomial operation simul-
taneously, and the coefficients of polynomials are distributed
to the 256-element groups with a static distribution strategy,
leading to three significant advantages. First, as a particular
coefficient can only be assigned to a specific group, the
complex 16 × 16 crossbar in F1, which deals with the
dynamic data exchange between on-chip scratchpad and
groups, is no longer required. Data movement caused by
operations among different polynomials can be eliminated as
well. Second, the parallelism of CraterLake is not influenced
by the varying multiplicative depth or numbers of concurrent
operations, which maintains the performance throughout an
entire FHE program and simplifies the software scheduler.

Although CraterLake is programmable enough to sup-
port different cryptographic parameters, the FUs, especially
NTT units, may face functionality limitations or resource
underutilization because of the static pipelined circuit, as we
mentioned in §3.1.4. The computation resources in Crater-
Lake can be fully utilized if and only if n = 65536, which
is a common problem for works containing a pipelined NTT
circuit (e.g., F1 and ARK). Besides, in CraterLake, the CRB
unit occupies 34% on-chip area, reducing the performance of

other operations, like NTT. Therefore, in the scenarios where
larger dnum is optimal, the CRB units are underutilized and
CraterLake cannot deliver sufficient acceleration.
4.1.10. BTS
BTS was proposed by Kim et al. in 2022 [28]. It is a follow-
up to 100× and shares similar design goals with CraterLake,
i.e., a bootstrappable and programmable hardware architec-
ture for word-wise FHE.

Because of the similar goal, many optimization ap-
proaches in BTS are close to those in CraterLake, including
the basis conversion unit, CLP parallelism scheme and
on-the-fly data generation. The most significant difference
between CraterLake and BTS is the pattern in which they
place basic functional units, thus leading to different im-
plementations of basic operations. The architecture of BTS
is close to that of modern GPUs, consisting of a 64 × 32
two-dimensional (2D) array of processing elements (PE).
Each PE comprises a basis conversion unit and a 2-point
NTT/iNTT unit (i.e., a single butterfly unit). The 2048 PEs
are interconnected via vertical and horizontal crossbars. An
example of 131072-point NTT with the architecture works
as follows. First, each PE performs a 64-point NTT indepen-
dently. Second, 64 PEs in the same row perform a 64-point
NTT with data synchronization through horizontal crossbars.
Third, 32 PEs in the same column perform a 32-point NTT
with data synchronization through vertical crossbars. This
process generalized the 4-step FFT/NTT algorithm. Each PE
plays a similar role to the GPU threads, and the crossbars
accomplish thread synchronization. To facilitate the unique
computational pattern, the authors placed multiple smaller
local scratchpads in each PE instead of putting a large
global one that communicates with all the PEs. The local
scratchpad is directly connected with HBM and eliminates
additional overhead from the hierarchical data distribution.

However, a potential drawback of BTS is that the 2D
array structure cannot execute NTT with a fully pipelined
workflow. As mentioned before, NTT operation in BTS
consists of three sequential steps and all the PEs are involved
in each step. Therefore, no pipeline parallelism can be
achieved if multiple NTT operations should be processed,
which may decrease the end-to-end performance. Similar to
F1 and CrateLake, BTS is not open-sourced.
4.1.11. ARK
ARK was proposed by Kim et al. in 2022 [29]. It consists
of four vectorized processing clusters, similar to the 256-
element groups of CraterLake. Each cluster contains sev-
eral primary operation units. Different from previous works
that target accelerating bootstrapping only from hardware
angle [27], [28], ARK is the first work that analyzes and
modifies the bootstrapping algorithm, thus achieving an
algorithm and hardware co-design to optimize the accelera-
tor’s performance. Specifically, the authors proposed multi-
hop homomorphic rotation and on-the-fly residue extension
to significantly reduce the size of switching keys and plain-
texts used in bootstrapping, respectively, which lowers the
difficulties in hardware design.

As mentioned earlier in this section, the workload of

10

basis conversion is heavy in bootstrapping, making CLP
a preferred parallelism scheme for bootstrappable acceler-
ators like CraterLake and BTS. But CLP also introduces
communication overhead in NTT. According to ARK, NTT
and basis conversion separately take up 54.8% and 34.2%
of the overall computational workload given practical boot-
strappable parameters. Since both functions are crucial to
end-to-end performance, ARK leverages both schemes, i.e.,
CLP for basis conversion and rPLP for the other operations
including NTT. A switching mechanism between the two
data distribution patterns is also used by ARK, especially for
functions that contain both NTT and basis conversion, such
as key-switching. In ARK’s paper, this hybrid parallelism
is proven more efficient than rPLP, but whether it is better
than CLP is not discussed.

4.2. Observations on Evolution of Existing Works
Based on the above survey, we make the following observa-
tions on the evolution of existing FHE accelerators and the
underlying connection among them. We also illustrate how
they address particular challenges mentioned in §3.
From General Hardware to Application-Specific In-
tegrated Circuit: Most latest FHE accelerators choose
Application-Specific Integrated Circuit (ASIC) as their hard-
ware platform for two reasons. First, general-purpose hard-
ware, such as CPU and GPU, suffer from fixed architec-
ture and limited on-chip memory, which fail to address
the challenges mentioned in §3. Second, FPGA suffers
from relatively limited programmable resources and low
operational frequency, which restricts it from reaching high
performance.

The advantage of applying ASICs to FHE accelerators is
that designers can optimize the hardware architecture with
high flexibility and utilize state-of-the-art technologies of the
computer architecture community according to the require-
ment of FHE computations. Recent ASIC-based works adopt
specially designed architecture, such as crossbars, to enable
complex polynomial operations described in §3.1.2. They
also use high-speed memory, including HBM and SRAM, to
accelerate the intensive memory access mentioned in §3.1.3
and §3.3. While promising, this design choice also intro-
duces several problems: 1) most modern ASIC-based FHE
accelerators are expensive to produce, especially when the
chip size is up to hundreds of square millimeters, e.g., a
14nm ASIC of 100mm2 requires millions of US dollars to
tape out; 2) most of these ASIC-based solutions are not
open-sourced due to reasons such as IP restrictions, making
them difficult to reproduce, thus undesirable for the research
community.
Software/Hardware Co-design: Early FHE accelerators
perform certain simple operations, such as NTT, after receiv-
ing a single instruction from upper-layer software without
any instruction scheduling [19], [30]. Since these operations
follow the static hardware workflow, which cannot be dy-
namically adapted, the accelerators suffer from limited gen-
erality (§3.1.4). Moreover, when accelerating an end-to-end
application containing massive high-level operations such as
bootstrapping (§3.3), the overhead of frequent interactions

between software and hardware cannot be ignored.

To overcome these problems, recent FHE accelerators
adopt software/hardware co-designed approaches. Specifi-
cally, they first leverage hardware-friendly algorithms to
divide the hardware resources into multiple computation
clusters which can be independently scheduled [26]–[29].
Furthermore, the designers can make extensive use of the
software’s flexibility to apply adaptations according to the
specific application to efficiently support complicated end-
to-end applications.

However, the current software design of FHE acceler-
ators fails to leverage knowledge from some of the latest
techniques, e.g., various FHE compilers [34], [35]. We
identify it as a potential future direction in §6.3.

Enhanced Programmability: Programmability, i.e., sup-
porting different cryptographic parameters without hardware
architecture reconfiguration, is not achieved in most of the
early works due to the following two reasons. First, early
works rarely focus on end-to-end acceleration for real-world
applications. Thus, they do not have such a need. Second,
programmability is not easy to achieve, considering the
complexity of FFT/NTT.

Recent FHE accelerators have begun to adopt the 4-
step FFT/NTT algorithm not only to increase parallelism
but also to improve the architecture’s programmability to
handle different parameters, specifically various n. Readers
may refer to Appendix B.2 for more details. The improved
programmability alleviates the generality limitation in poly-
nomial computations described in §3.1.4, although the prob-
lems are not eradicated. Currently, an unresolved issue is the
generality challenge in key-switching (§3.2). Recent works
focusing on deep calculations show unoptimized perfor-
mance in shallow tasks. As described in [27], in shallow
benchmarks without bootstrapping (L is between 4 and 8),
CaterLake is slower than F1 due to the underutilization of
the basis conversion units that occupy a large proportion of
hardware resources.

Unlimited Depth of Operations: Interestingly, the latest
few works (i.e., CraterLake [27], BTS [28], and ARK [29])
show a similar tendency of accelerating bootstrapping to
achieve unlimited ’fully’ homomorphic operations. This
common goal leads to the convergence of multiple de-
sign choices. First, optimized algorithms, including 4-step
FFT/NTT and generalized key-switching, are preferred be-
cause of their advantages in handling large ciphertexts.
Recent studies are willing to allocate a considerable amount
of hardware resources to corresponding structures such as
global transpose and fast basis conversion. Second, recent
works invest much effort in eliminating the memory ac-
cess bottleneck. They tend to reduce the memory overhead
at the cost of introducing extra calculations, like on-the-
fly generation of essential parameters. Last but not least,
since all these works have emphasized the importance of
basis conversion, CLP is becoming the primary parallelism
scheme, contrasting with rPLP in the earlier designs.

11

5. Evaluation
5.1. Evaluation Methodology
In this section, we provide a quantitative comparison of
these existing FHE accelerators. As introduced in §4, some
FHE accelerators are open-sourced. We will use our testbed
to reproduce the results of some representative ones. Since
these open-sourced FHE accelerators do not provide direct
support for end-to-end algorithms, we mainly evaluate how
they accelerate the performance of NTT and key-switching.
In this paper, we evaluate HEXL, HEXL-FPGA, and 100×
as word-wise FHE schemes. We also evaluate two bit-wise
FHE accelerators: cuFHE and nuFHE.

Second, since some latest FHE accelerators are not open-
sourced, we will directly use the results from their original
papers. For example, the paper of HEAX and F1 provides
its performance of accelerating NTT and key-switching, thus
we will align these results with our testbed results. More-
over, some latest ASIC-based accelerators, such as F1, BTS
and ARK, also provide end-to-end performance results of
accelerating two real-world applications, i.e., ResNet20 [43]
and Logistic Regression [70], we will also include these
results in our paper.
Testbed settings: We use one X86 server as our testbed.
The server is equipped with an Intel(R) Xeon(R) Gold 5115
CPU running at 2.40GHz and 128GB RAM. The CPU
supports AVX-512 FMA [64]. We also use Intel PAC D5005
Acceleration Card with an Intel Stratix 10 GX FPGA [71] to
reproduce the results of HEXL-FPGA. For all accelerators
that require the GPU as their target hardware, we use
NVIDIA V100 GPU with 32GB RAM for evaluation [67].
5.2. Evaluation Results
NTT/FFT. First, we will evaluate the performance of
word-wise FHE accelerators. Figure 5 shows the NTT
performance of HEXL, HEXL-FPGA, 100×, HEAX and
F1. Please note that the performance of HEXL, HEXL-
FPGA and 100× is measured on our testbed, while the
performance results of HEAX and F1 are from their original
paper. We also run SEAL [33] without any accelerators to
demonstrate the baseline performance (denoted as No Acc
in the Figure). In this evaluation, we use three settings of
n, i.e., n = 4096, 8192, 16384. Similar to HEAX, we set
the bit-width of polynomial coefficients in NTT to 52 for
evaluation [19]. But F1 chooses the bit-width of 32 as it is
the largest word size in F1. Theoretically, the performance
of F1 should be slightly worse if the bit-width is 52.

We mainly have the following observations. 1) when the
FHE accelerators leverage more advanced hardware tech-
nologies, the performance is largely improved. For example,
the CPU-based accelerator, HEXL, can only achieve up to
3.0× acceleration ratio, while ASIC-based accelerators, F1,
can achieve up to 20546.9× acceleration ratio. 2) contra-
dicting our common wisdom, specific-designed hardware-
based solutions do not always yield better performance than
general hardware-based ones. For example, HEXL-FPGA
and HEAX cannot achieve a better acceleration ratio over
100×. The core reason is that HEXL-FPGA and HEAX
adopt FPGA as their hardware platform, which suffers from

No Acc

HEXL

HEXL-F
PGA

HEAX
10

0#

F1 (3
2b

it)
10!3

10!1

101

103

T
im

e
(7

s)

n = 4096 n = 8192 n = 16384

Figure 5: Performance of NTT. The performance of HEXL,
HEXL-FPGA and 100× is measured on our testbed while
the performance results of HEAX and F1 are from their
original paper.

N
o
t

A
v
a
ia

b
le

No Acc

HEXL

HEXL-F
PGA

HEAX
10

0# F1
10!3

10!1

101

103

105

T
im

e
(7

s)

Setting 1 Setting 2 Setting 3

Figure 6: Performance of key-switching. The performance of
HEXL, HEXL-FPGA and 100× is measured on our testbed
while the performance results of HEAX and F1 are from
their original paper. HEXL-FPGA does not support Setting3.

the aforementioned problems such as limited programmable
resources and low working frequency. Precisely, V100 GPU
in our evaluation has the peak performance of ∼ 250 INT8
TOPS with tensor core [67], which is ∼ 10× better than
Stratix 10 FPGA [72] used in HEAX and HEXL-FPGA.

Figure 7 shows the performance of NAND gate achieved
by cuFHE and nuFHE on our testbed. The NAND gate is a
typical example that includes bootstrapping in bit-wise FHE
schemes, such as TFHE. Polynomial multiplication in TFHE
can be accelerated with either NTT or FFT, and we mark
the schemes used by different libraries in the Figure. For the
baseline (No Acc), we run the TFHE software libraries [73].

From our evaluation, we can observe that nuFHE and
cuFHE can achieve 170.6× and 186.2× acceleration with
NTT implementation, respectively. Moreover, nuFHE also
supports using FFT to accelerate the NAND gate, which
can achieve up to 432.0× acceleration.
Key-switching. In our evaluation, we use three settings.
Setting1: n = 4096, L = 1, log(P ·Q) = 109, dnum = 2,
Setting2: n = 8192, L = 3, log(P ·Q) = 218, dnum = 4,
Setting3: n = 16384, L = 7, log(P ·Q) = 438, dnum = 8.
Figure 6 shows the results. We have similar results as pre-
vious FFT/NTT experiments. Worth noting, HEXL-FPGA
cannot perform key-switching with the most complicated
setting, i.e. setting3, which confirms the potential drawback
as discussed in §4.1.6.
End-to-end applications. Figure 8 shows the end-to-end
performance over two applications achieved by three ASIC-
based solutions, i.e. F1, BTS and ARK. Since these solutions
are not open-sourced, we use the results from their original
papers. We do not include the results of ResNet20 with
F1 and 100× since they are not presented in the original
papers. The results reveal that: 1) As discussed in §4.1.8, in

12

No Acc
(F

FT)

cu
FHE

(N
TT)

nu
FHE

(N
TT)

nu
FHE

(F
FT)

10!2

10!1

100

101

102

T
im

e
(m

s)

Figure 7: Performance of
NAND gate with NTT/FFT.

N
o
t

A
v
a
ia

b
le

N
o
t

A
v
a
ia

b
le

100# F1 BTS ARK
100

101

102

103

104

T
im

e
(m

s)

ResNet20 LR

Figure 8: Performance of
end-to-end applications.

a task requiring large multiplicative depth, F1 shows critical
performance deficiencies despite its significant performance
of NTT. For example, it takes F1 1024ms to execute a single
iteration of LR, which is even slower than 100× (775ms);
2) For deep benchmarks, accelerators that support efficient
bootstrapping achieve better performance. For example,
BTS and ARK are separately 36.0× and 132.7× faster
than F1 in LR. As ARK proposes further improvement
over bootstrapping, including algorithm optimization and
architecture co-design, it achieves better performance when
bootstrapping dominates the workflow. In ResNet20, where
bootstrapping takes up to 76.2% of the total workload, ARK
achieves a 6.5× speedup compared to BTS.

6. Discussion on Future Directions
Inspired by the above qualitative (§4) and quantitative (§5)
studies, in this section we discuss some future directions of
designing and implementing FHE accelerators.

6.1. Application-driven Design Approach
Most existing FHE accelerators are trying to build increas-
ingly powerful accelerators by leveraging more advanced ar-
chitecture technologies, such as better semiconductor manu-
facturing processes [19], [26]–[29]. While such design meth-
ods can largely improve the performance of FHE schemes,
they also become more unaffordable, especially for these
ASIC-based solutions.

We envision that a future opportunity for FHE accel-
erators could be the application-driven design approach.
The reason is that for some practical FHE applications,
the performance is determined not only by the accelerators
with extremely high FHE computing performance, but also
by the whole architecture stack that customizes with the
application. For example, FHE is widely adopted in private
set intersection (PSI), and a recent work called INSPIRE co-
designs the storage architecture with the FHE accelerator to
improve the end-to-end performance of the PSI application
by minimizing the overhead of data movement between the
storage controller and FHE accelerators [74]. We believe
such an application-driven design approach could better
balance the application requirements, costs, and design dif-
ficulties, providing a promising direction for the future.

6.2. Supporting both Word-wise & Bit-wise FHE
Schemes

As discussed in §2, word-wise FHE is more suitable for
polynomial evaluation, while bit-wise FHE is preferred for
non-polynomial evaluation. However, real-world applica-
tions, such as machine learning tasks, require both polyno-

mial and non-polynomial evaluations to be effective. More-
over, ciphertexts switch between the two forms (e.g., CKKS
and FHEW in [38]) is extremely complicated, thus time-
consuming. Therefore, designing a FHE accelerator that can
simultaneously support both word-wise and bit-wise FHE
schemes, and further perform efficient ciphertext switch and
evaluation is important for real-world applications, which is
worthy of future investigation.

6.3. Enhanced Software/Hardware Co-design
In recent works, the software has been considered an im-
portant part of the design. Some works, such as F1 [26],
CraterLake [27], use compilers for a software/hardware co-
design solution. However, they do not provide a compre-
hensive description of the software design. We believe fully
functional compilers should be co-designed with general
FHE compilers, such as EVA [34]. As the FHE compiler
SoK paper [32] indicates, general FHE compilers can op-
timize FHE programs based on the cost model of FHE
schemes. We believe these general FHE compilers could
be integrated with FHE accelerator compilers for improved
end-to-end performance by considering a cost model from
a hardware-level perspective, which points to a potential
future direction.

6.4. From Scale-up to Scale-out
Current FHE acceleration solutions mostly focus on scale-
up, i.e., improving the performance of a single accelerator
vertically. However, scale-out, i.e., connecting multiple FHE
accelerators via networking horizontally, should also be an
effective way to further improve the performance of FHE
applications. As discussed in §3, the data inflation problem
has posed a challenge to efficient data movement between
on-chip and off-chip memories. This challenge also exists
when we connect multiple FHE accelerators via networking
in a scale-out manner. Thus, FHE accelerator and network
co-design, e.g., integrating both FHE acceleration functions
and high-performant networking controllers on the same
chip, should be a potential research direction in the future.

6.5. Accelerating NTRU-based Schemes
In this paper, we do not include accelerators for traditional
NTRU-based solutions such as [75] since these NTRU-
based schemes were believed to be vulnerable to attacks
and thus impractical [76]. However, recently various modern
NTRU-based solutions have been proposed to overcome
its original security problems [77]. Moreover, NTRU-based
solutions have the advantages of low memory consumption
and fast computation. Therefore, we believe that designing
practical accelerators for modern NTRU-based solutions
also deserves future exploration.

7. Conclusion
In this paper, we presented a comprehensive systematization
of knowledge by both qualitatively and quantitatively study-
ing 11 existing FHE accelerators and observing their evo-
lution process. We further discussed some potential future
directions of designing and implementing FHE accelerators,
which we hope could inspire the research community.

13

References
[1] H. Tian, C. Zeng, Z. Ren, D. Chai, J. Zhang, K. Chen, and

Q. Yang, “Sphinx: Enabling privacy-preserving online learning
over the cloud,” in 2022 IEEE Symposium on Security and
Privacy, SP 2022, Los Alamitos, CA, USA, May, 2022. IEEE
Computer Society, 2022, pp. 1135–1149. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00066

[2] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine
learning: Concept and applications,” ACM Trans. Intell. Syst.
Technol., vol. 10, no. 2, pp. 12:1–12:19, 2019. [Online]. Available:
https://doi.org/10.1145/3298981

[3] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA, USA, May
22-26, 2017. IEEE Computer Society, 2017, pp. 19–38. [Online].
Available: https://doi.org/10.1109/SP.2017.12

[4] M. H. Mughees, H. Chen, and L. Ren, “Onionpir: Response efficient
single-server PIR,” in CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna,
and E. Shi, Eds. ACM, 2021, pp. 2292–2306. [Online]. Available:
https://doi.org/10.1145/3460120.3485381

[5] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher,
J. Bossuat, J. S. Sousa, and J. Hubaux, “POSEIDON: privacy-
preserving federated neural network learning,” in 28th Annual
Network and Distributed System Security Symposium, NDSS 2021,
virtually, February 21-25, 2021. The Internet Society, 2021.
[Online]. Available: https://www.ndss-symposium.org/ndss-paper/
poseidon-privacy-preserving-federated-neural-network-learning/

[6] J. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin,
E. Lee, J. Lee, D. Yoo, Y. Kim, and J. No, “Privacy-preserving
machine learning with fully homomorphic encryption for deep neural
network,” IEEE Access, vol. 10, pp. 30 039–30 054, 2022. [Online].
Available: https://doi.org/10.1109/ACCESS.2022.3159694

[7] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection
from homomorphic encryption,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
B. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. ACM,
2017, pp. 1243–1255. [Online]. Available: https://doi.org/10.1145/
3133956.3134061

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” ACM Trans.
Comput. Theory, vol. 6, no. 3, pp. 13:1–13:36, 2014. [Online].
Available: https://doi.org/10.1145/2633600

[9] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., p. 144, 2012. [Online].
Available: http://eprint.iacr.org/2012/144

[10] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Advances
in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
I, ser. Lecture Notes in Computer Science, T. Takagi and T. Peyrin,
Eds., vol. 10624. Springer, 2017, pp. 409–437. [Online]. Available:
https://doi.org/10.1007/978-3-319-70694-8 15

[11] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD
operations,” Des. Codes Cryptogr., vol. 71, no. 1, pp. 57–81, 2014.
[Online]. Available: https://doi.org/10.1007/s10623-012-9720-4

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd Edition. MIT Press, 2009. [Online].
Available: http://mitpress.mit.edu/books/introduction-algorithms

[13] F. Boemer, S. Kim, G. Seifu, F. D. M. de Souza, and V. Gopal, “Intel
HEXL: accelerating homomorphic encryption with intel AVX512-
IFMA52,” in WAHC ’21: Proceedings of the 9th on Workshop
on Encrypted Computing & Applied Homomorphic Cryptography,
Virtual Event, Korea, 15 November 2021. WAHC@ACM, 2021, pp.
57–62. [Online]. Available: https://doi.org/10.1145/3474366.3486926

[14] “A gpu implementation of fully homomorphic encryption on torus,”
https://github.com/nucypher/nufhe, accessed: 2022-07-07.

[15] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over
100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with gpus,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2021, no. 4, pp. 114–148, 2021. [Online].
Available: https://doi.org/10.46586/tches.v2021.i4.114-148

[16] “CUDA toolkit,” https://developer.nvidia.com/cuda-toolkit, accessed:
2022-07-07.

[17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster
fully homomorphic encryption: Bootstrapping in less than 0.1
seconds,” in Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part I, ser. Lecture Notes in Computer
Science, J. H. Cheon and T. Takagi, Eds., vol. 10031, 2016, pp. 3–33.
[Online]. Available: https://doi.org/10.1007/978-3-662-53887-6 1

[18] “Intel homomorphic encryption (HE) acceleration library for FPGAs,”
https://github.com/intel/hexl-fpga, accessed: 2022-07-08.

[19] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: an
architecture for computing on encrypted data,” in ASPLOS ’20:
Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020, J. R. Larus,
L. Ceze, and K. Strauss, Eds. ACM, 2020, pp. 1295–1309. [Online].
Available: https://doi.org/10.1145/3373376.3378523

[20] D. B. Cousins, J. Golusky, K. Rohloff, and D. Sumorok, “An FPGA
co-processor implementation of homomorphic encryption,” in IEEE
High Performance Extreme Computing Conference, HPEC 2014,
Waltham, MA, USA, September 9-11, 2014. IEEE, 2014, pp. 1–6.
[Online]. Available: https://doi.org/10.1109/HPEC.2014.7040950

[21] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating fully homomorphic
encryption in hardware,” IEEE Trans. Computers, vol. 64, no. 6,
pp. 1509–1521, 2015. [Online]. Available: https://doi.org/10.1109/
TC.2014.2345388

[22] V. Migliore, C. Seguin, M. M. Real, V. Lapotre, A. Tisserand,
C. Fontaine, G. Gogniat, and R. Tessier, “A high-speed accelerator
for homomorphic encryption using the karatsuba algorithm,” ACM
Trans. Embed. Comput. Syst., vol. 16, no. 5s, pp. 138:1–138:17,
2017. [Online]. Available: https://doi.org/10.1145/3126558

[23] D. B. Cousins, K. Rohloff, and D. Sumorok, “Designing an fpga-
accelerated homomorphic encryption co-processor,” IEEE Trans.
Emerg. Top. Comput., vol. 5, no. 2, pp. 193–206, 2017. [Online].
Available: https://doi.org/10.1109/TETC.2016.2619669

[24] A. C. Mert, E. Öztürk, and E. Savas, “Design and implementation
of encryption/decryption architectures for BFV homomorphic
encryption scheme,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 28, no. 2, pp. 353–362, 2020. [Online]. Available: https://
doi.org/10.1109/TVLSI.2019.2943127

[25] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”
in Proceedings of the ACM/SIGDA 14th International Symposium
on Field Programmable Gate Arrays, FPGA 2006, Monterey,
California, USA, February 22-24, 2006, S. J. E. Wilton and
A. DeHon, Eds. ACM, 2006, pp. 21–30. [Online]. Available:
https://doi.org/10.1145/1117201.1117205

[26] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. G. Dreslinski,
C. Peikert, and D. Sánchez, “F1: A fast and programmable accelerator
for fully homomorphic encryption,” in MICRO ’21: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, Virtual
Event, Greece, October 18-22, 2021. ACM, 2021, pp. 238–252.
[Online]. Available: https://doi.org/10.1145/3466752.3480070

[27] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sánchez, “Craterlake:
a hardware accelerator for efficient unbounded computation on
encrypted data,” in ISCA ’22: The 49th Annual International
Symposium on Computer Architecture, New York, New York, USA,
June 18 - 22, 2022, V. Salapura, M. Zahran, F. Chong, and
L. Tang, Eds. ACM, 2022, pp. 173–187. [Online]. Available:
https://doi.org/10.1145/3470496.3527393

14

https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00066
https://doi.org/10.1145/3298981
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1145/3460120.3485381
https://www.ndss-symposium.org/ndss-paper/poseidon-privacy-preserving-federated-neural-network-learning/
https://www.ndss-symposium.org/ndss-paper/poseidon-privacy-preserving-federated-neural-network-learning/
https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/2633600
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/s10623-012-9720-4
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/3474366.3486926
https://github.com/nucypher/nufhe
https://doi.org/10.46586/tches.v2021.i4.114-148
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1007/978-3-662-53887-6_1
https://github.com/intel/hexl-fpga
https://doi.org/10.1145/3373376.3378523
https://doi.org/10.1109/HPEC.2014.7040950
https://doi.org/10.1109/TC.2014.2345388
https://doi.org/10.1109/TC.2014.2345388
https://doi.org/10.1145/3126558
https://doi.org/10.1109/TETC.2016.2619669
https://doi.org/10.1109/TVLSI.2019.2943127
https://doi.org/10.1109/TVLSI.2019.2943127
https://doi.org/10.1145/1117201.1117205
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3470496.3527393

[28] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H.
Ahn, “BTS: an accelerator for bootstrappable fully homomorphic
encryption,” in ISCA ’22: The 49th Annual International Symposium
on Computer Architecture, New York, New York, USA, June
18 - 22, 2022, V. Salapura, M. Zahran, F. Chong, and
L. Tang, Eds. ACM, 2022, pp. 711–725. [Online]. Available:
https://doi.org/10.1145/3470496.3527415

[29] J. Kim, G. Lee, S. Kim, G. Sohn, J. Kim, M. Rhu, and
J. H. Ahn, “ARK: fully homomorphic encryption accelerator with
runtime data generation and inter-operation key reuse,” CoRR, vol.
abs/2205.00922, 2022. [Online]. Available: https://doi.org/10.48550/
arXiv.2205.00922

[30] S. S. Roy, F. Turan, K. Järvinen, F. Vercauteren, and I. Verbauwhede,
“Fpga-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 25th IEEE International
Symposium on High Performance Computer Architecture, HPCA
2019, Washington, DC, USA, February 16-20, 2019. IEEE,
2019, pp. 387–398. [Online]. Available: https://doi.org/10.1109/
HPCA.2019.00052

[31] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,”
ACM Comput. Surv., vol. 51, no. 4, pp. 79:1–79:35, 2018. [Online].
Available: https://doi.org/10.1145/3214303

[32] A. Viand, P. Jattke, and A. Hithnawi, “Sok: Fully homomorphic
encryption compilers,” in 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021.
IEEE, 2021, pp. 1092–1108. [Online]. Available: https://doi.org/
10.1109/SP40001.2021.00068

[33] “Microsoft SEAL,” https://github.com/microsoft/SEAL, accessed:
2022-07-12.

[34] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and
M. Musuvathi, “EVA: an encrypted vector arithmetic language and
compiler for efficient homomorphic computation,” in Proceedings of
the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, A. F. Donaldson and E. Torlak, Eds. ACM,
2020, pp. 546–561. [Online]. Available: https://doi.org/10.1145/
3385412.3386023

[35] E. Chielle, O. Mazonka, N. G. Tsoutsos, and M. Maniatakos, “E3: A
framework for compiling C++ programs with encrypted operands,”
IACR Cryptol. ePrint Arch., p. 1013, 2018. [Online]. Available:
https://eprint.iacr.org/2018/1013

[36] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding, ser. Lecture Notes in Computer Science, J. Stern,
Ed., vol. 1592. Springer, 1999, pp. 223–238. [Online]. Available:
https://doi.org/10.1007/3-540-48910-X 16

[37] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, no. 2, pp. 120–126, 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

[38] W. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu, “PEGASUS:
bridging polynomial and non-polynomial evaluations in homomorphic
encryption,” in 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,
2021, pp. 1057–1073. [Online]. Available: https://doi.org/10.1109/
SP40001.2021.00043

[39] L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic
encryption in less than a second,” in Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, ser. Lecture
Notes in Computer Science, E. Oswald and M. Fischlin, Eds.,
vol. 9056. Springer, 2015, pp. 617–640. [Online]. Available:
https://doi.org/10.1007/978-3-662-46800-5 24

[40] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, “CHIMERA:
combining ring-lwe-based fully homomorphic encryption schemes,”
J. Math. Cryptol., vol. 14, no. 1, pp. 316–338, 2020. [Online].
Available: https://doi.org/10.1515/jmc-2019-0026

[41] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices
and learning with errors over rings,” in Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Monaco /
French Riviera, May 30 - June 3, 2010. Proceedings, ser. Lecture
Notes in Computer Science, H. Gilbert, Ed., vol. 6110. Springer,
2010, pp. 1–23. [Online]. Available: https://doi.org/10.1007/978-3-
642-13190-5 1

[42] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based,” in Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part I, ser. Lecture
Notes in Computer Science, R. Canetti and J. A. Garay, Eds.,
vol. 8042. Springer, 2013, pp. 75–92. [Online]. Available:
https://doi.org/10.1007/978-3-642-40041-4 5

[43] J. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin,
E. Lee, J. Lee, D. Yoo, Y. Kim, and J. No, “Privacy-preserving
machine learning with fully homomorphic encryption for deep neural
network,” IEEE Access, vol. 10, pp. 30 039–30 054, 2022. [Online].
Available: https://doi.org/10.1109/ACCESS.2022.3159694

[44] “HElib Country Lookup Example,” https://github.com/homenc/HElib/
tree/master/examples/BGV country db lookup.

[45] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping
for approximate homomorphic encryption,” IACR Cryptol. ePrint
Arch., p. 153, 2018. [Online]. Available: http://eprint.iacr.org/2018/
153

[46] K. Han and D. Ki, “Better bootstrapping for approximate
homomorphic encryption,” in Topics in Cryptology - CT-RSA 2020
- The Cryptographers’ Track at the RSA Conference 2020, San
Francisco, CA, USA, February 24-28, 2020, Proceedings, ser.
Lecture Notes in Computer Science, S. Jarecki, Ed., vol. 12006.
Springer, 2020, pp. 364–390. [Online]. Available: https://doi.org/
10.1007/978-3-030-40186-3 16

[47] S. Halevi and V. Shoup, “Bootstrapping for helib,” J. Cryptol.,
vol. 34, no. 1, p. 7, 2021. [Online]. Available: https://doi.org/
10.1007/s00145-020-09368-7

[48] H. Chen and K. Han, “Homomorphic lower digits removal
and improved FHE bootstrapping,” in Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part I, ser. Lecture
Notes in Computer Science, J. B. Nielsen and V. Rijmen, Eds.,
vol. 10820. Springer, 2018, pp. 315–337. [Online]. Available:
https://doi.org/10.1007/978-3-319-78381-9 12

[49] S. Foldes, “Symmetries of directed graphs and the chinese remainder
theorem,” J. Comb. Theory, Ser. B, vol. 28, no. 1, pp. 18–25, 1980.
[Online]. Available: https://doi.org/10.1016/0095-8956(80)90053-2

[50] “General data protection regulation,” https://gdpr-info.eu, accessed:
2022-10-20.

[51] “Palisade homomorphic encryption software library,” https://palisade-
crypto.org, accessed: 2022-07-31.

[52] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex fourier series,” Mathematics of computation,
vol. 19, no. 90, pp. 297–301, 1965. [Online]. Available: https://
doi.org/10.1090/S0025-5718-1965-0178586-1

[53] W. M. Gentleman and G. Sande, “Fast fourier transforms: for
fun and profit,” in American Federation of Information Processing
Societies: Proceedings of the AFIPS ’66 Fall Joint Computer
Conference, November 7-10, 1966, San Francisco, California, USA,
ser. AFIPS Conference Proceedings, vol. 29. AFIPS / ACM /
Spartan Books, Washington D.C., 1966, pp. 563–578. [Online].
Available: https://doi.org/10.1145/1464291.1464352

15

https://doi.org/10.1145/3470496.3527415
https://doi.org/10.48550/arXiv.2205.00922
https://doi.org/10.48550/arXiv.2205.00922
https://doi.org/10.1109/HPCA.2019.00052
https://doi.org/10.1109/HPCA.2019.00052
https://doi.org/10.1145/3214303
https://doi.org/10.1109/SP40001.2021.00068
https://doi.org/10.1109/SP40001.2021.00068
https://github.com/microsoft/SEAL
https://doi.org/10.1145/3385412.3386023
https://doi.org/10.1145/3385412.3386023
https://eprint.iacr.org/2018/1013
https://doi.org/10.1007/3-540-48910-X_16
http://doi.acm.org/10.1145/359340.359342
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1515/jmc-2019-0026
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1109/ACCESS.2022.3159694
https://github.com/homenc/HElib/tree/master/examples/BGV_country_db_lookup
https://github.com/homenc/HElib/tree/master/examples/BGV_country_db_lookup
http://eprint.iacr.org/2018/153
http://eprint.iacr.org/2018/153
https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1016/0095-8956(80)90053-2
https://gdpr-info.eu
https://palisade-crypto.org
https://palisade-crypto.org
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1145/1464291.1464352

[54] D. H. Bailey, “Ffts in external or hierarchical memory,” in
Proceedings Supercomputing ’89, Reno, NV, USA, November 12-17,
1989, F. R. Bailey, Ed. ACM, 1989, pp. 234–242. [Online].
Available: https://doi.org/10.1145/76263.76288

[55] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation
of the AES circuit,” in Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings, ser. Lecture Notes
in Computer Science, R. Safavi-Naini and R. Canetti, Eds.,
vol. 7417. Springer, 2012, pp. 850–867. [Online]. Available:
https://doi.org/10.1007/978-3-642-32009-5 49

[56] M. R. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser,
S. Gorbunov, S. Halevi, J. Hoffstein, K. Laine, K. E. Lauter,
S. Lokam, D. Micciancio, D. Moody, T. Morrison, A. Sahai,
and V. Vaikuntanathan, “Homomorphic encryption standard,” IACR
Cryptol. ePrint Arch., p. 939, 2019. [Online]. Available: https://
eprint.iacr.org/2019/939

[57] “Cuda homomorphic encryption library (cuhe),” https://github.com/
vernamlab/cuHE, accessed: 2022-07-30.

[58] “Cuda-accelerated fully homomorphic encryption library (cufhe),”
https://github.com/vernamlab/cuFHE, accessed: 2022-07-30.

[59] W. Dai and B. Sunar, “cuhe: A homomorphic encryption accelerator
library,” in Cryptography and Information Security in the Balkans
- Second International Conference, BalkanCryptSec 2015, Koper,
Slovenia, September 3-4, 2015, Revised Selected Papers, ser. Lecture
Notes in Computer Science, E. Pasalic and L. R. Knudsen, Eds.,
vol. 9540. Springer, 2015, pp. 169–186. [Online]. Available:
https://doi.org/10.1007/978-3-319-29172-7 11

[60] “Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit,” https://
www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html.

[61] F. Turan, S. S. Roy, and I. Verbauwhede, “HEAWS: an accelerator
for homomorphic encryption on the amazon AWS FPGA,” IEEE
Trans. Computers, vol. 69, no. 8, pp. 1185–1196, 2020. [Online].
Available: https://doi.org/10.1109/TC.2020.2988765

[62] “HElib,” https://github.com/homenc/HElib, accessed: 2022-07-31.

[63] “Intel HEXL,” https://github.com/intel/hexl, accessed: 2022-11-13.

[64] “Intel Advanced Vector Extensions 512 (Intel AVX-512),”
https://www.intel.com/content/www/us/en/architecture-and-
technology/avx-512-overview.html.

[65] A. Guermouche and A. Orgerie, “Thermal design power and
vectorized instructions behavior,” Concurr. Comput. Pract. Exp.,
vol. 34, no. 2, 2022. [Online]. Available: https://doi.org/10.1002/
cpe.6261

[66] D. G. Bailey, “The advantages and limitations of high level
synthesis for FPGA based image processing,” in Proceedings of
the 9th International Conference on Distributed Smart Camera,
Seville, Spain, September 8-11, 2015, R. Carmona-Galán and
Á. Rodrı́guez-Vázquez, Eds. ACM, 2015, pp. 134–139. [Online].
Available: https://doi.org/10.1145/2789116.2789145

[67] “NVIDIA V100 Datasheet,” https://images.nvidia.com/content/
technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-
r5.pdf.

[68] S. Kim, W. Jung, J. Park, and J. H. Ahn, “Accelerating number
theoretic transformations for bootstrappable homomorphic encryption
on gpus,” CoRR, vol. abs/2012.01968, 2020. [Online]. Available:
https://arxiv.org/abs/2012.01968

[69] J. Bossuat, C. Mouchet, J. R. Troncoso-Pastoriza, and J. Hubaux,
“Efficient bootstrapping for approximate homomorphic encryption
with non-sparse keys,” in Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia,
October 17-21, 2021, Proceedings, Part I, ser. Lecture Notes
in Computer Science, A. Canteaut and F. Standaert, Eds.,
vol. 12696. Springer, 2021, pp. 587–617. [Online]. Available:
https://doi.org/10.1007/978-3-030-77870-5 21

[70] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression
on homomorphic encrypted data at scale,” in The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019. AAAI Press, 2019, pp. 9466–9471. [Online].
Available: https://doi.org/10.1609/aaai.v33i01.33019466

[71] “Intel FPGA PAC D5005,” https://www.intel.com/content/www/us/
en/products/sku/193921/intel-fpga-pac-d5005/specifications.html, ac-
cessed: 2022-10-17.

[72] “Intel Stratix 10 GX/SX Product Table,” https://www.intel.com/
content/www/us/en/content-details/652478/intel-stratix-10-gx-
fpga-and-intel-stratix-10-sx-soc-fpga-family-overview-product-
table.html.

[73] “TFHE: Fast Fully Homomorphic Encryption Library over the Torus,”
https://github.com/tfhe/tfhe, accessed: 2022-11-17.

[74] J. Lin, L. Liang, Z. Qu, I. Ahmad, L. Liu, F. Tu, T. Gupta, Y. Ding,
and Y. Xie, “INSPIRE: in-storage private information retrieval via
protocol and architecture co-design,” in ISCA ’22: The 49th Annual
International Symposium on Computer Architecture, New York, New
York, USA, June 18 - 22, 2022, V. Salapura, M. Zahran, F. Chong,
and L. Tang, Eds. ACM, 2022, pp. 102–115. [Online]. Available:
https://doi.org/10.1145/3470496.3527433

[75] W. Dai, Y. Doröz, and B. Sunar, “Accelerating NTRU based
homomorphic encryption using gpus,” in IEEE High Performance
Extreme Computing Conference, HPEC 2014, Waltham, MA, USA,
September 9-11, 2014. IEEE, 2014, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/HPEC.2014.7041001

[76] É. Jaulmes and A. Joux, “A chosen-ciphertext attack against
NTRU,” in Advances in Cryptology - CRYPTO 2000, 20th Annual
International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2000, Proceedings, ser. Lecture Notes in
Computer Science, M. Bellare, Ed., vol. 1880. Springer, 2000, pp.
20–35. [Online]. Available: https://doi.org/10.1007/3-540-44598-6 2

[77] C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, and N. P.
Smart, “FINAL: faster FHE instantiated with NTRU and LWE,”
IACR Cryptol. ePrint Arch., p. 74, 2022. [Online]. Available:
https://eprint.iacr.org/2022/074

Appendix A.
NTT/FFT
Given a polynomial A of degree n as follows:

A(x) =

n−1∑
j=0

ajx
j (3)

The polynomial can be represented in the form of the
vector of its coefficients as a = (a1, a2, ..., an−1). While
the addition operation of two polynomials a and b (i.e.,
element-wise addition of their coefficients vectors) is trivial,
the multiplication of a and b (denoted as a

⊗
b in our pa-

per) is time-consuming with the computation complexity of
O(n2). Since polynomial multiplication is the fundamental
operation in FHE schemes, e.g., encryption, homomorphic
operations, etc., such high computation complexity causes
FHE schemes to be extremely inefficient.

To optimize polynomial multiplication, another rep-
resentation of the polynomial — point-value represen-
tation — can be exploited. A polynomial of degree
n can be represented by n distinct point-value tuples:
{(x0, y0), (x1, y1), ...(xn−1, yn−1)}, where yk = A(xk) and
k ∈ [0, n). To achieve calculations between polynomials,

16

https://doi.org/10.1145/76263.76288
https://doi.org/10.1007/978-3-642-32009-5_49
https://eprint.iacr.org/2019/939
https://eprint.iacr.org/2019/939
https://github.com/vernamlab/cuHE
https://github.com/vernamlab/cuHE
https://github.com/vernamlab/cuFHE
https://doi.org/10.1007/978-3-319-29172-7_11
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://doi.org/10.1109/TC.2020.2988765
https://github.com/homenc/HElib
https://github.com/intel/hexl
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://doi.org/10.1002/cpe.6261
https://doi.org/10.1002/cpe.6261
https://doi.org/10.1145/2789116.2789145
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://arxiv.org/abs/2012.01968
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1609/aaai.v33i01.33019466
https://www.intel.com/content/www/us/en/products/sku/193921/intel-fpga-pac-d5005/specifications.html
https://www.intel.com/content/www/us/en/products/sku/193921/intel-fpga-pac-d5005/specifications.html
https://www.intel.com/content/www/us/en/content-details/652478/intel-stratix-10-gx-fpga-and-intel-stratix-10-sx-soc-fpga-family-overview-product-table.html
https://www.intel.com/content/www/us/en/content-details/652478/intel-stratix-10-gx-fpga-and-intel-stratix-10-sx-soc-fpga-family-overview-product-table.html
https://www.intel.com/content/www/us/en/content-details/652478/intel-stratix-10-gx-fpga-and-intel-stratix-10-sx-soc-fpga-family-overview-product-table.html
https://www.intel.com/content/www/us/en/content-details/652478/intel-stratix-10-gx-fpga-and-intel-stratix-10-sx-soc-fpga-family-overview-product-table.html
https://github.com/tfhe/tfhe
https://doi.org/10.1145/3470496.3527433
https://doi.org/10.1109/HPEC.2014.7041001
https://doi.org/10.1007/3-540-44598-6_2
https://eprint.iacr.org/2022/074

e.g., A and B, the same group of xk is chosen from both
polynomials A and B. Under point-value representation,
both addition and multiplication between two polynomials
of degree n only require n point-wise operations on yk.
Therefore, the computation complexity is reduced to O(n).

However, the conversion from coefficient representation
to point-value representation is still time-consuming and
requires the calculation of yk = A(xk) for every xk. The
time complexity of evaluating each A(xk) is O(n), thus
leading to overall time complexity of O(n2) for k ∈ [0, n).
The same complexity is needed for the inverse conversion.

To lower the time complexity of representation conver-
sion, we choose special xk values. For a polynomial of
degree n − 1, we use the roots of an equation ωn = 1
as xk values. The equation has n roots, denoted as e2πik/n,
k = 0, 1, ..., n − 1. They are usually written in simplified
form as ωkn = e2πik/n, which is the power of ωn = e2πi/n.
With these roots, we can write Equation 3 as

Ak = A(ωkn) =

n−1∑
j=0

ajω
kj
n , k ∈ [0, n) (4)

Equation 4 is called Discrete Fourier Transform (DFT).
Our goal is to accelerate the transformation with the property
of ωn.

For ωn, we have the following theorems:

ω2k
2n = ωkn (5)

ω
k+n

2
n = −ωkn (6)

Given a polynomial A(x) = a0 +a1 ·x1 +a2 ·x2 + ...+
an−1 ·xn−1, we can re-arrange it to A(x) = (a0 +a2 ·x2 +
a4 ·x4+...+an−2 ·xn−2)+x(a1+a3 ·x2+a5 ·x4+...+an−1 ·
xn−2). Let A[0](x) = a0+a2 ·x1+a4 ·x2+ ...+an−2 ·x

n−2
2

and A[1](x) = a1 + a3 · x1 + a5 · x2 + ... + an−1 · x
n−2
2 .

Then we have A(x) = A[0](x2) + xA[1](x2).
Therefore, we can use xk = ωkn to sample values. For

k = 0, 1, · · · , n/2− 1, we have

A(ωkn) = A[0](ω2k
n) + ωknA

[1](ω2k
n) (7)

Based on Theorems 5, the equation transforms into

A(ωkn) = A[0](ωkn
2

) + ωknA
[1](ωkn

2
) (8)

Similarly, for k + n/2, we have:

A(ω
k+n

2
n) = A[0](ω2k+n

n) + ω
k+n

2
n A[1](ω2k+n

n) (9)

Based on Theorems 5 and 6, the equation now becomes:

A(ω
k+n

2
n) = A[0](ωkn

2
)− ωknA[1](ωkn

2
) (10)

Note that k and k + n/2 have covered all integers
ranging from 0 to n − 1. Then the problem becomes a
divide-and-conquer problem. The origin problem A is split
into two subproblems of A[0] and A[1] whose degrees of
polynomial are n/2. It requires n/2 extra multiplications

to recover A from A[0] and A[1]. After that, A[0] and A[1]

can be further divided into smaller subproblems following
the same scheme. The recursion ends when the degree of
the polynomial in the subproblem is 1. According to the
master theorem in [12], the time complexity can be reduced
to O(n log n).

The aforementioned process is called Fast Fourier Trans-
form (FFT). When the degree of polynomials is n, we refer
to the transform as an n-point FFT. The inverse operation
of FFT is called iFFT, which can be implemented with a
similar approach.

Number Theoretic Transforms (NTT) is similar to DFT
but works with the finite field. Different from DFT in
Equation 4, NTT is formulated as

Ak =

n−1∑
j=0

ajg
kj
n mod p, k ∈ [0, n), (11)

where p is a prime, and gn is the primitive n-th root of unity
modulo p, which satisfies the following theorems:

g2k2n ≡ gkn mod p (12)

g
k+n

2
n ≡ −gkn mod p (13)

With Theorem 12 and 13, NTT can be accelerated
following the same scheme we discussed in FFT, except
for the multiplication and addition/subtraction, which need
to be replaced by modular multiplication and modular ad-
dition/subtraction, respectively.

Appendix B.
4-step FFT/NTT Algorithm
B.1. Introduction to 4-step FFT/NTT Algorithm
In this section, we use the example of an n-point FFT to
illustrate the workflow of the 4-step FFT/NTT algorithm.
Recall the original FFT (DFT) in Equation 4. In FHE
schemes, n is a power of two and can be expressed as the
product of two numbers n = R ·C. Based on this property,
we consider the n input numbers {aj , j ∈ [0, n)} as an
R×C matrix. In this way, the workflow of the 4-step FFT
is as follows.

1. Transpose the R × C input matrix and get a new
C × R matrix. Perform FFT on each row of the C × R
matrix (i.e., C independent R-point FFTs). We let matrix
A′ denote the results of FFTs.

2. Transpose matrix A′ and get a new R×C matrix A′′.
3. Generate a R × C twisting factor matrix F = [Fi,j],
where Fi,j = ωijn . Then perform dyadic multiplication
between matrix A′′ and matrix F . Let matrix A′′′ denote
the multiplication result.

4. Perform FFT on each row of the R × C matrix A′′′

(i.e., R independent C-point FFTs). Transpose the result
of FFT and get a new C ×R matrix, denoted as A.
A is the final result of the n-point FFT with some

differences in the placement order of the result numbers

17

from the original FFT algorithm. The 4-step NTT algorithm
follows a similar workflow with modular operations between
integers. Since the order of coefficients does not affect
the correctness of element-wise polynomial addition and
multiplication, the 4-step FFT/NTT algorithm can be easily
applied in FHE schemes to replace the original FFT/NTT
algorithm. Actually, we could skip the transpose in the first
step by storing the input numbers in column-major order,
and skip the transpose in the fourth step because of the
order-independent element-wise operations.

B.2. Comparison between the 4-step FFT/NTT Al-
gorithm and the Original FFT/NTT Algorithm

This section will show the pros and cons of the 4-step
FFT/NTT algorithm by comparing it with the original
FFT/NTT algorithm.

B.2.1. Efficient and Practical Parallelism
As mentioned in §3.1.2, the original FFT/NTT algorithm can
hardly be accelerated via parallelism because of strict data
dependency and high computation resource consumption.
The 4-step FFT/NTT algorithm alleviates both problems.

Less Data Dependency: According to the aforementioned
workflow, the 4-step FFT/NTT algorithm decomposes the
n-point FFT/NTT operation into C independent R-point
FFT/NTTs in the first step, a global transpose in the second
step, n independent multiplications in the third step, and R
independent C-point FFT/NTTs in the last step. Although
the four steps should be executed one by one, the paral-
lelism in these steps (except for the second step) is fully
exploited as these independent operations can be performed
simultaneously. Since R and C can be quite large (e.g.,
when n = 65536, R = C = 256), the parallelism is
high enough to fully utilize the performance capacity of
hardware accelerators. Actually, the global data dependency
problem in the original FFT/NTT algorithm still exists in
the second step when transposing the matrix. Consequently,
a large transpose network is required. Recent works prefer
such a design since 1) the transpose network is much easier
to design than FFT/NTT due to its fixed workflow; 2) the
transpose network can be reused in other operations such as
permutation [26], which improves the resource utilization.

Low Resource Consumption: Compared to the original
FFT/NTT, the total computation workload in the 4-step
FFT/NTT is not reduced. But the original algorithm is de-
composed into multiple smaller ones with much fewer input
numbers (we choose R and C close to

√
n in many cases).

Therefore, instead of designing a fully pipelined n-point
FFT/NTT circuit, we can combine multiple small pipelined
FFT/NTT units (i.e., R-point and C-point FFT/NTT units)
to achieve the same arithmetic function, reducing the hard-
ware design complexity. To reduce hardware resource con-
sumption, we can reuse R-point FFT/NTT units rather than
implement all the units as dedicated ones (i.e., R C-point
FFT/NTT units and C R-point FFT/NTT units). Therefore,
the 4-step FFT/NTT algorithm requires much fewer hard-
ware resources to achieve pipeline parallelism.

B.2.2. Increased Memory Overhead
Although promising, the 4-step FFT/NTT also causes in-
creased memory overhead due to pre-computed parameters.
In addition to the input data and calculation results, we need
to store the twiddle factors for n-point FFT/NTT in the
original algorithm. Larger n leads to more twiddle factors.
Although the number of twiddle factors is reduced in the 4-
step FFT/NTT algorithm since we only need twiddle factors
for R-point and C-point FFT/NTTs, we need to store the
twisting factors introduced in the third step of the 4-step
FFT/NTT algorithm. The size of twisting factors in the
4-step FFT/NTT algorithm is close to the size of twiddle
factors in the original algorithm, making the requirements
of total storage even more strict. To address the problem,
recent works generate twiddle and twisting factors on the fly
rather than cache all the factors in the memory [27], [28].

18

	1 Introduction
	2 Fully Homomorphic Encryption
	2.1 Encoding, Decoding, Encryption & Decryption
	2.2 Homomorphic Evaluation
	2.3 Ciphertext Maintenance
	2.4 RNS Decomposition

	3 What Make FHE Slow & the Challenges of Accelerating Them
	3.1 Challenges of Accelerating Polynomial Computation
	3.1.1 FFT/NTT
	3.1.2 High Computation Complexity
	3.1.3 Intensive Memory Access
	3.1.4 Limited Generality

	3.2 Challenges of Accelerating Key-switching
	3.3 Challenges of Accelerating Bootstrapping

	4 FHE Accelerators
	4.1 Survey of Existing FHE Accelerators
	4.1.1 cuHE/cuFHE
	4.1.2 nuFHE
	4.1.3 HEAT
	4.1.4 HEAX
	4.1.5 HEXL
	4.1.6 HEXL-FPGA
	4.1.7 100
	4.1.8 F1
	4.1.9 CraterLake
	4.1.10 BTS
	4.1.11 ARK

	4.2 Observations on Evolution of Existing Works

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Evaluation Results

	6 Discussion on Future Directions
	6.1 Application-driven Design Approach
	6.2 Supporting both Word-wise & Bit-wise FHE Schemes
	6.3 Enhanced Software/Hardware Co-design
	6.4 From Scale-up to Scale-out
	6.5 Accelerating NTRU-based Schemes

	7 Conclusion
	References
	Appendix A: NTT/FFT
	Appendix B: 4-step FFT/NTT Algorithm
	B.1 Introduction to 4-step FFT/NTT Algorithm
	B.2 Comparison between the 4-step FFT/NTT Algorithm and the Original FFT/NTT Algorithm
	B.2.1 Efficient and Practical Parallelism
	B.2.2 Increased Memory Overhead

