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Abstract—In recent years, receiver-driven transport protocols have been proposed to use proactive congestion control to meet the
stringent latency requirements of large-scale applications in data center. However, the receiver-driven proposals face the challenges
brought by network dynamic. Firstly, when the bursty flows start, the aggressive and blind line-rate transmission in the first RTT easily
leads to persistent queue backlog. Secondly, when some flows finish transmissions, the remaining ones cannot increase their sending
rates to seize the available bandwidth. To address these problems, this paper presents a new receiver-driven congestion control
design, called REN, which uses the under- and over-utilization notifications from switch to handle the dynamic traffic. With the aid of
explicit feedback, REN alleviates the traffic burstiness due to aggressive start, mitigates the conservativeness in utilizing available
bandwidth, and still retains the receiver-driven feature to achieve ultra-low latency. We implement the prototype of REN using DPDK.
The experimental results of real testbed and large-scale NS2 simulation show that REN effectively reduces the average flow
completion time (AFCT) by up to 68% over the state-of-the-art receiver-driven transmission schemes.

Index Terms—Data center, receiver-driven, latency, link utilization.
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1 INTRODUCTION

LARGE-SCALE data centers use over 100 thousand
servers to host various applications. To provide high-

bandwidth and low-latency communication, data center
networks typically utilize the Clos network with shallow-
buffered switches and 10/40 Gbps and even 100 Gbps links.
To optimize the flow completion time in datacenter applica-
tions, numerous transport protocols such as DCTCP [1] are
proposed to keep small queueing delay and mitigate Incast
traffic. However, these sender-side proposals utilize reactive
congestion control algorithms, which reduce sending rate
after congestion already happens, inevitably inducing queue
buildup and performance degradation of short or tiny flows
in delay-sensitive applications.

To meet the stringent latency requirements (e.g., zero
queueing delay) of large-scale applications in data center,
many receiver-driven transport protocols such as Homa
[2] have been proposed in recent years. In contrast to the
traditional transport protocols which react to congestion
after sending data packets, these state-of-the-art receiver-
driven proposals proactively conduct congestion control
even before sending data packets. In the receiver-driven
congestion control, the data packets are paced by the grant
or credit packets from the receiver. Thus, the sending rate of
data packets does not exceed the capacity of bottleneck link,
successfully avoiding queue buildup.

However, the receiver-driven congestion control mech-
anisms fundamentally face two problems. Firstly, since the
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senders start transmission at line rate in the first RTT to
achieve high link utilizations, they are still prone to induce
persistent queue buildup or even buffer overflow under
bursty traffic. Secondly, the receiver-driven congestion con-
trol easily incurs low link utilization problem due to net-
work dynamic. When some flows finish their transmissions,
the remaining ones are not able to grab the available band-
width of bottleneck link, because their data packets are only
triggered by the arrivals of grant packets. In Section 2, we
show that the receiver-driven approaches suffer from under-
utilization issue under network dynamic, and experience
large queueing latency under bursty traffic, resulting in
suboptimal network performance.

In this paper, we propose a new congestion control
mechanism, REN (Receiver-driven protocol based on Ex-
plicit Notification), which uses only two reserved ECN bits
in packet header to deliver the under- and over-utilization
notifications from switch. With the aid of switch-based
explicit feedback, REN gracefully handles the bursty and
dynamic traffic to achieve both zero-queueing and full link
utilization. We implement REN using DPDK and show that
REN introduces only a very small system overhead.

In summary, our major contributions are:

• We conduct an extensive experiment based study to
investigate two key issues of current receiver-driven
proposals: (1) the aggressive line-rate transmission in
the first RTT easily leads to persistent queue backlog,
(2) when some flows finish their transmissions in the
dynamic traffic scenario, the released bandwidth can
not be fully utilized by the other coexisting flows due
to the receiver-driven manner.

• We propose a receiver-driven transport protocol
REN, which uses packet marking to explicitly notify
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the queue-buildup or spare bandwidth. Therefore,
REN quickly eliminates queueing latency after the
start of line-rate transmission, and meanwhile cau-
tiously increases aggressiveness of receiver-driven
transmission to achieve high link utilization. More-
over, REN can be easily deployed on the commercial
switches with their built-in packet marking function.

• The test results of both testbed experiments and
large-scale simulations demonstrate that REN sig-
nificantly outperforms the state-of-the-art receiver-
driven proposals in terms of link utilization and
queueing delay. Compared with pHost [3], Homa
and NDP [4], REN reduces the average flow com-
pletion time (AFCT) by up to 68% under typical
datacenter workloads.

The rest of this paper is organized as follows. In Section
2 and 3, we describe our design motivation and details,
respectively. In Section 4, we give the model analysis. In Sec-
tion 5 and 6, we show the test results of testbed experiment
and NS2 simulation, respectively. We present the related
works in Section 7, and conclude this paper in Section 8.

2 DESIGN MOTIVATION

The receiver-driven transport protocols use proactive con-
gestion control to achieve extremely low latency. When re-
ceiving one data packet, the receiver sends a corresponding
grant packet, which allows the sender to transmit only one
new data packet. However, modern data centers widely
employ the Partition/Aggregate processing model to pro-
vide high performance. A large number of workers simul-
taneously send concurrent flows with various flow sizes,
resulting in highly dynamic traffic [5], [6]. Fundamentally,
the proactive congestion control has to face the problems
of queue backlog and link under-utilization under network
dynamic. In this section, we investigate these two issues in
current receiver-driven transmission schemes.

2.1 Queue Backlog
The receiver-driven sender transmits only one data packet
once receiving a grant packet from the receiver. Therefore,
the sender naturally knows the safe sending rate without
incurring congestion. However, the receiver-driven schemes
cannot probe bandwidth before transmission. Without any
prior knowledge about the available bandwidth, the sender
has to start transmission in dark. To achieve full link uti-
lization, when a new flow starts, the sending rate is link
capacity (or line rate) in the 1st RTT. This aggressive and
blind transmission easily leads to queue buildup and even
buffer overflow. More seriously, after the 1st RTT, since
the receiver-driven sending rate converges to the bottleneck
link’s output rate, the queue backlog still persists.
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Fig. 1. Queue backlog issue.

We use an example to illustrate the queue backlog issue.
Fig. 1 shows a typical many-to-many transmission scenario
where two senders H0 and H1 respectively send flows
A and B to 2 receivers H2 and H3. We assume that the
bandwidth of each link is 2 packets per RTT. In the 1st RTT,
H0 and H1 respectively send 2 packets at line rate to H2
and H3 simultaneously, resulting in a queue buildup at the
switch S0. Then, the corresponding 4 grants are generated to
drive 4 packets in next round. After that, since the number
of in-flight packets is still 4, the queue backlog cannot be
drained.

2.2 Link Under-utilization

In the concurrent transmission scenario of data center net-
work, it is very common that multiple receiver-driven flows
share one bottleneck link. Unfortunately, under the receiver-
driven transmission, if some flows finish their transmissions
and release bandwidth, the remaining ones are not able to
increase their sending rates to make full use of bottleneck
link, leading to under-utilization problem.

H0
Flow A

S

H1

H2
Flow B

B1 A1

A0 B0

B0 A0

A1 B1

H0
Flow A

S

H1

H2
Flow B

A2 B2

B2 A2

T1T0

B3 A3

A3 B3

DataData GrantGrantData Grant

H0

Flow A

S0

H1

H2

Flow B

B1 A1

A0 B0

B0 A0

A1 B1

T0

S1

H3

DataData GrantGrantData Grant

A2

A2

A4

A3

A3

A4

A5

A5

H0

Flow A

S0

H1

H2

Flow B
T1

S1

H3

Fig. 2. Under-utilization issue.

We use another example to illustrate the link under-
utilization issue. As shown in Fig. 2, at time T0, H0 and H1
send 3 and 2 packets, respectively. However, after H1 finish
transmission, H0 still send only 3 packets in the next round
T1, since the data packets are paced by the grant packets
from the receiver. Therefore, the link cannot be fully utilized
in the rest of transmission.

2.3 Empirical Study

We further conduct testbed experiments to investigate the
performances of recent receiver-driven proactive proposals
including pHost, Homa, NDP. We use a typical dumbbell
topology including three senders H0, H1, and H2, and two
receivers H3 and H4, which are connected through two
switches S0 and S1. We generate f0 and other two bursty
flows with 1.5KB packet size. Flow f0 is sent from host
H0 to receiver R0, and 2 bursty flows are sent from hosts
H1∼H2 to another receiver H3. The link bandwidth and
switch buffer size are 10Gbps and 64KB, respectively. The
propagation delay of each link is 8µs. At the beginning,
f0 fully utilizes the bottleneck link. To simulate network
dynamically, 2 bursty flows start at 0.8s and stop at 1.25s.

Fig. 3 (a) shows the real-time queue length of the bot-
tleneck link. Under pHost and Homa, when two bursty
flows start with line rate, the queue length immediately
exceeds the buffer size, resulting in packet losses. Though
NDP uses Cut Payload (CP) to strictly limit queue length
to 8 packets, the queueing latency is still nonnegligible for
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Fig. 3. Comparison of different protocols.

short flow with very small RTT. Under all three receiver-
driven proposals, since the packet arrival rate at S0 is equal
to the output rate after the 1st RTT, the queue length does
not decrease until the bursty flows stop.

Moreover, Fig. 3 (b) shows the testbed results of the
real-time throughputs under different protocols. At the be-
ginning, the throughput of f0 is 10Gbps. After two bursty
flows stop at 1.25s, pHost and Homa cannot probe the
available bandwidth and increase sending rates. The link
is kept under-utilized to the end of test. Consequently, the
link utilizations are reduced by 20%-30%. Compared with
the other receiver-driven proposals, NDP quickly grabs the
available bandwidth after the burst leave, since the payload-
cut packets will trigger normal packets to utilize the avail-
able bandwidth.

2.4 Summary

Our analysis of the problem of receiver-driven transmission
under network dynamic leads us to conclude that (1) current
receiver-driven proposals potentially suffer from the queue
buildup and cannot drain the queue under the burst traffic,
resulting in persistent queueing latency. (2) The conservative
nature of receiver-driven transmission makes it hard to
fully utilize the bottleneck link even the spare bandwidth
exists. To address these issues, we design and implement
a receiver-driven transport protocol called REN to achieve
low latency and high link utilization under network dy-
namic.

3 PROTOCOL DESIGN

To support the highly dynamic and concurrent flows in
current datacenter applications, the transport design should
be cost-effective in controlling queue buildup and probing
available bandwidth. In this section, we present the design
overview and details of REN.

3.1 Design Overview
To solve queueing latency and under-utilization problem,
REN uses the under- and over-utilization notifications from
switch to adjust the sending rate in its receiver-driven
transmission. Fig. 4 describes the architecture of REN.
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Fig. 4. Architecture.

(1) Switch. To provide fine-grained notifications, the
switch measures the queue length and time interval of
arrival packets in each sampling period. For each sampling
period, if the queue length is larger than 0, the switch marks
the reserved ECN bits in packet header to deliver the over-
utilization signal. On the other hand, if the sum of time
interval of consecutively arrival packets is larger than the
transmission time of one data packet, the under-utilization
signal is generated.

(2) Receiver. Once receiving a data packet, the receiver
generates a corresponding grant packet, copies the ECN
marks of data packet to the grant one, and sends it to the
sender.

(3) Sender. With the explicit feedback of grant packets,
the sender adjusts its sending rate. Specifically, if receiving
one grant packet with over-utilization notification, to mit-
igate the queue buildup, the sender does not send out a
new data packet. If one arrival grant packet carries under-
utilization notification, two data packets will be triggered to
improve the link utilization.

3.2 Design Details
The key points of REN design are to mitigate queue buildup
and improve link utilization using ECN marking. We give
the design details as follows.

3.2.1 Mitigate queue buildup
Even though the receiver-driven protocols conservatively
generate only one data packet once receiving one grant
packet, the newly arrival flows with line-rate start still lead
to queue backlog. To address this issue, REN promptly
reduces the sending rate once detecting the queue backlog.

For each sampling period, the switch updates the queue
length ql (in packets). If ql is larger than 0, REN marks ql
data packets with over-utilization signals. Since the corre-
sponding grant packets with over-utilization notifications
do not trigger new data packets, the queue backlog will be
drained quickly.

As shown in Fig. 5, we use the same scenario as Fig. 1 to
illustrate how to mitigate queue buildup. At time T0, H0 and
H1 simultaneously start at line rate and respectively send 2
packets to H2 and H3, resulting in a queue buildup at the
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Fig. 5. Mitigate queue buildup.

switch S0. Then, S0 marks packets A1 and B1, which drive
2 marked grant packets. Since the marked grant packets do
not trigger new data packets, H0 and H1 only generate 2
new data packets at time T1 to drain the buffered packets
at the switch. Consequently, REN obtains the zero queueing
delay, without degradation of link utilization. Intuitively, if
receiving marked data packets, the receiver can stop send-
ing corresponding grant packets to make the connection
idle. However, to keep the end-to-end control loop, the
receiver still generates the marked grant packets, which are
only 40Bytes packet header without payload.

3.2.2 Improve link utilization
Due to the conservativeness in probing available band-
width, the receiver-driven flows cannot grab the spare band-
width even after some coexisting flows finish. In our design,
the switch measures the total time interval, which is the
sum of consecutive packets interval time in each sampling
period. If the total time interval is larger than the transmis-
sion time of ti data packets, the switch marks ti packets
with under-utilization signals. Note that we calculate the
transmission time of each data packet as MSS/C, where
MSS is the maximum segment size and C is the link
capacity. Then, each corresponding grant packet from the
receiver will trigger two new data packets at the sender to
fill the gap between packets.
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Fig. 6. Improve link utilization.

Fig. 6 gives the same scenario as Fig. 2 to show how
REN improves the link utilization. At time T0, H0 sends
3 packets, in which the time interval between A3, A4 and
A5 can accommodate 2 packets. When detecting the gaps
between A3, A4 and A5, switch S0 marks A4 and A5 with
under-utilization signals. At time T1, 2 data packets are
generated on the arrival of each marked grant packet with
under-utilization notification. Then, the sender transfers 5
packets to quickly fill up the bottleneck link in the next
round of transmission.

3.2.3 ECN marking
To avoid extra traffic overhead in feedback, REN utilizes 2
reserved ECN bits in packet header to carry the state of link

utilization. Specifically, the switch marks the ECN bits as
(00)2, (01)2 and (10)2 to indicate the under-, full- and over-
utilization of its egress link, respectively.

Since the sending rate of each flow should be deter-
mined by the most congested bottleneck link in end-to-end
transmissions, REN allocates different priorities to different
feedback signals, that is, over- and under-utilization have
the highest and lowest priorities, respectively.
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Fig. 7. ECN marking.

As shown in Fig. 7, H0 sends a flow to receiver H3.
At time T0, all packets are marked as under-utilization
(i.e., 00) by H0. When switch S0 detects the gap between
the arrival packet and the previous one is less than the
transmission time of one packet at time T1, the arrival
packets are marked as full-utilization (i.e., P1 is marked as
01) since the full-utilization signal has higher priority than
the under-utilization one. When P1 and P2 arrive at switch
S1, P3 also arrives and fills up the gap between P1 and P2.
At time T2, S1 marks P2 and P3 with full-utilization (i.e., 01).
At time T3, packets P1∼P4 simultaneously arrive at switch
S2, resulting in queue buildup. Then S2 marks P2 with
over-utilization signal (i.e., 10) which has the higher priority
than full-utilization one. Finally, H0 reduces its sending rate
by one packet in the next round to achieve zero queueing
latency and full utilization of bottleneck link between S2
and H3.

To provide real-time feedback, REN measures the queue
length and packet interval in each sampling period (i.e.,
round trip propagation time) to make decision on marking
packets. Due to high dynamic of network traffic, however,
the switch may detect the queue buildup and idle link
during the same sampling period. For example, during
a sampling period, if the link is under-utilization at the
beginning and then some new flows arrive, the bottleneck
queue builds up and the bottleneck link becomes over-
utilization. On the contrary, if the bottleneck link is over-
utilization at the beginning and the some flows leave, the
queue backlog drains quickly, resulting in under-utilization.
To solve this issue, at the end of each sampling period,
REN compares the values of queue length ql and total
time interval of consequent packets ti, both of which are
expressed in packets. If ql is larger than ti, ql − ti packets
are marked as over-utilization. Otherwise, ti−ql packets are
marked as under-utilization.

4 MODEL ANALYSIS

Compared with the state-of-the-art receiver-driven propos-
als, REN features its ability in using packet marking to con-
vey under- or over-utilization information. With the explicit
notifications, the senders adjust the sending rates to avoid
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queue backlog and bandwidth wastage. Therefore, REN
achieves near-zero queueing delay and full link utilization
simultaneously. In this section, we construct the theoretical
model to analyze the performance gain of REN in queue
length and link utilization.

4.1 Queue Length

We assume that mi flows start at the line rate and fi flows
finish in the ith round trip time (RTT) round. All links have
the same bandwidthC. The bandwidth-delay productBDP
is C ×RTT/MSS in packets.

In the 1st RTT round, m1 arrival flows make full use of
the bottleneck link and generate a queue buildup with its
queue length q1 as

q1 = (m1 − 1)×BDP. (1)

In the ith RTT round, mi new flows starting at line rate
increase the queue length by mi × BDP . Meanwhile, fi
flows finish transmissions. Assuming that all flows fairly
share the bottleneck link, the released bandwidth rli by fi
flows is calculated as

rli =
fi∑i−1

j=1mj −
∑i−1

k=1 fk
×BDP. (2)

Under REN, the sender reduces the queue length by one
BDP each RTT round through controlling the sending rate,
Thus, the queue length in the ith RTT round q ri is

q ri = q ri−1 +mi ×BDP −BDP − rli. (3)

Under the traditional receiver-driven transports, how-
ever, the sender does not reduce its sending rate. Thus, we
get the queue length in the ith RTT round q ti as

q ti = q ti−1 +mi ×BDP − rli. (4)

4.2 Link Utilization

We assume that m flows pass through the bottleneck link
with capacity of C in the ith RTT round, and the total rate of
all flows is Ri. When Ri is less than C, the bottleneck link is
not fully utilized. In our design, once the output rate is less
than the bottleneck link capacity, the switch marks packets
to indicate the under-utilization. Each corresponding grant
packet triggers two data packets in the next round. Thus,
we get the total rate Ri+1 of all flows in the next RTT round
as

Ri+1 =

{
2×Ri Ri <

C
2 .

C Ri ≥ C
2 .

(5)

From Equation (5), we calculate the number of RTTs N
needed by the sender to increase its rate R to the bottleneck
link bandwidth C as

N =

{
dlog2 C

2Re+ 1 R < C
2 .

1 R ≥ C
2 .

(6)

As shown in Fig. 8, a flow starts to increase its send-
ing rate at time T1. Under REN, the sender firstly uses
n = dlog2 C

2Re RTT rounds to exponentially increase its
sending rate and then needs one RTT round to converge
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REN achieves 100% bottleneck utilization
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Fig. 8. REN vs. Traditional receiver-driven protocol.

its rate to the full utilization. REN fills up the full band-
width at T2. Compared with REN, the traditional protocols
experience lower link utilization after T1. When transmitting
the same amount of data, REN finishes the transmission
at FCT1, earlier than the traditional protocols’ completion
time FCT2.

Next, we construct a dynamic scenario. At the beginning,
we assume that there are F active flows sharing the full
bottleneck bandwidth fairly with no queue buildup. Then
these flows leave during a period of time. The number of
leaving flows in the ith RTT round is fi.

In the first RTT round, f1 flows release their occupied
bandwidth. The total throughput of remaining active flows
thr1 is

thr1 = C − C

F
× f1. (7)

Under REN, the sender proactively seizes the available
bandwidth once detecting link under-utilization. Given the
bottleneck throughput thr ri−1 in the (i − 1)th round and
the number of leaving flows fi in the ith round, we get the
the bottleneck throughput thr ri in the ith round as

thr ri =

C −
C

F−
∑i−1

k=1 fk
× fi thr ri−1 ≥ C

2 .

2× thr ri−1 − 2×thr ri−1

F−
∑i−1

k=1 fk
× fi thr ri−1 <

C
2 .

(8)
Under the traditional receiver-driven transports, how-

ever, the sender does not increase its sending rate though
there is spare bandwidth. Thus, we get the bottleneck
throughput in the ith RTT round thr ti as

thr ti = C − C

F
×

i∑
k=1

fk. (9)

With the bottleneck throughputs, we get the link utiliza-
tion ratios of REN and traditional receiver-driven transports
as thr ri

C and thr ti
C , respectively.

4.3 Numerical Analysis
We use numerical analysis to show the advantages of REN
in draining queue and grabbing free bandwidth. We set the
capacity of bottleneck link C to 10Gbps and 40Gbps, and the
round trip time to 10µs. According to Poisson distribution,
we generate the numbers of arrival flows and leaving flows.
And the average flow arrival strength increases from 0.1 to
1, which is proportional to Poisson distribution’s parameter
λ. Fig. 9 (a) shows that REN achieves the ultra-low average
queue length. The reason is that once the queue backlog
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occurs, REN marks packets according to the queue length
to notify senders to reduce sending rate. Therefore, the
queue length is effectively decreased especially when the
flow arrival strength is small.
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Fig. 9. Numerical analysis.

The link utilization ratios of traditional receiver-driven
protocols and REN are shown in Fig. 9 (b). In this numerical
analysis, the capacity of bottleneck link C is set to 40Gbps.
We generate the number of leaving flows f , according to
the Poisson distribution. The flow leaving strength increases
from 0.1 to 1, which is proportional to Poisson distribution’s
parameter λ. The initial number of flow F is changed from
20 to 30. In Fig. 9 (b), REN achieves significant benefits in
link utilization. When the ratio of the flow leaving strength
increases, REN can utilize more free bandwidth at the bot-
tleneck link compared with the traditional receiver-driven
transport protocols.

5 TESTBED EVALUATION

In this section, we firstly implement REN by using Intel
DPDK and then evaluate the performance of REN on a real
testbed. We compare it against pHost, Homa and NDP. All
protocols are implemented via Intel DPDK and all parame-
ters are set as the default values [2], [3], [4].

5.1 Real Implementation

We implement the prototype of both host-side and switch of
REN using DPDK.

Host-side. We use rte mbuf raw alloc() function to
allocates an uninitialized struct rte mbuf from the memory
pool for constructing a packet. We use rte pktmbuf mtod()
function to point different offset of rte mubf , correspond-
ing to different fields of a packet header. Thus, we can read
and modify any header fields easily. A constructed packet is
send to the NIC by using rte eth tx burst() function. And
we use rte eth rx burst() function to receive a packet from
the NIC.

Specifically, at the receiver, once receiving a data packet
by using rte eth rx burst() function, REN constructs a
rte mbuf (grant) and copies the ECN of the data packet
to this grant, and then sends it back to the sender by using
rte eth tx burst() function. At the sender, once receiving
a grant by using rte eth rx burst(), REN constructs the
different number of rte mbuf (data packets) according to
the ECN mark of grant header, and then sends them to the
receiver by using rte eth tx burst() function. Note that the
ECN filed of each data packet is initialized as (00)2 by using
rte pktmbuf mtod() function.

Switch. As shown in Fig. 10, the packet forwarding
implementation of REN consists of the receiving, marking
and transmitting modules. At the DPDK switch, each port
has one receive queue and one transmit queue. One CPU
core is used for each port to achieve fast packet processing.

...

Receive Queue

Queue length

Packet interval
...

Ring

...

Transmit Queue

CoreNIC
RX

CoreNIC
RX

CoreNIC
RX

Core NIC
TX

Core NIC
TX

Core NIC
TX

{
{

{

Packet

Pointer to packet Shared Memory Pool

Fig. 10. REN’s DPDK implementation.

Firstly, the receiving module uses the
rte eth rx burst() function to retrieve packets from
receiving ports. When receiving a packet, the switch
delivers it to a receive queue of the output port for further
processing. The receive queue is allocated and set up by
rte eth rx queue setup() function. The output port is
determined according to the route table. Note that one port
has one logical queue in form of the ring structure that
is created by using the rte ring create() function. Each
logical queue has a threshold that is set as the buffer size
of each port. The arrival packets are dropped if the queue
length of logical queue is larger than the threshold. The
switch drops packets by calling the rte pktmbuf free()
function.

Then, the marking module is used to mark the packet
to deliver the signal of over-utilization or under-utilization.
Specifically, two custom counters are used to record the
queue length of logical queue at each port and the packet
interval between two consecutive packets, respectively.
The queue length is obtained by the rte ring count()
function. The packet interval is calculated by the differ-
ence of dequeueing time of two consecutive packets, and
the dequeueing time is obtained by the rte rdtsc() and
rte get timer hz() functions. The switch firstly utilizes
the two counters to assess the network utilization. Then
the switch marks two reserved ECN bits in packet header
according to the network utilization condition. Note that
we use rte pktmbuf headroom() function to access the
two reserved ECN bits and utilize the rte ipv4 cksum()
function to process the checksum of packet header.

Finally, the transmitting module moves packets from
each logical queue to the transmit queue of corresponding
output port, and then delivers the packets in the transmit
queue to the network by using the rte eth tx burst() func-
tion. We use rte eth tx queue setup() function to allocate
and set up the transmit queue.

Note that DPDK implements packets delivery by their
pointer rather than real packet data. A pre-allocated mem-
ory pool is used to place real packet data described as
rte mbuf struct. Before sending out the packets to the net-
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work, DPDK driver gets packet data from shared memory
pool. Besides, since each port is served by an individual
CPU, the DPDK switch can process packets at the line rate.

5.2 Evaluation
The testbed consists of 6 servers, which are Dell PRECISION
TOWER 5820 desktops. Each server has a Intel Core Xeon
W-2255 CPU, 64GB memory, and 512 GB hard disk. The
servers run Ubuntu16.06 with GNU/Linux kernel 3.18.20
and are equipped with Intel 10GbE 2P X520 Network Inter-
face Cards (NICs). Two servers emulate two six-port DPDK
switches. The other settings are as same as those in Section
2.

Firstly, we test whether REN effectively reduces the
queue length and timely seizes the spare bandwidth. We
use the same test settings in Section 2. According to the
experience, we set the sampling period of REN as baseRTT
48µs. The bottom subfigures of Fig. 3 (a) and (b) show the
queue length and flow throughput under REN, respectively.

At the beginning, f0 starts at the line rate and then fully
utilizes the bottleneck link. At 0.8s, two bursty flows start at
line rate. As shown in Fig. 3 (a), although the instantaneous
queue length increases after bursty flows arrive, REN drains
queue quickly in the next RTT and then the queue length
keeps near zero. The reason is that REN marks packets
at the switches once detecting queue buildup and reduces
the sending rate after receiving the corresponding marked
grant packets. In Fig. 3 (b), f0 and two bursty flows share
the link bandwidth after 0.8s. When bursty flows stop at
1.25s, since REN marks packets to send under-utilization
notification, f0 is able to quickly grab the free bandwidth
and achieve the full link utilization. Compared with test
results of the other receiver-driven protocols shown in Fig.
3, REN simultaneously obtains ultra-low queue length and
high link utilization.
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Fig. 11. Perfomance with varying burst degree.

Then, we test REN performance under different bursty
strengths. We increase the number of sending hosts of
bursty flows in the topology described in section 2. Fig. 11
(a) shows the buffer occupancy under bursty traffic from
0.8s to 1.25s. When the number of bursty flows increases
from 1 to 4, REN keeps a very low buffer occupancy with
different bursty strengths. Fig. 11 (b) shows the loss of link
utlization after the bursty flows finish transmissions. Due to
the conservativeness in receiver-driven transmission, pHost
and Homa experience greater loss of link utilization with
more busrty flows.

Next, we test the flow completion time (FCT) to evaluate
the performance of REN with different flow sizes. Specifi-
cally, two long-lived background flows between two pairs

of hosts are sent in advance to fully occupy the bottleneck
link. During the transfer of background flow, three hosts
send three short flows to one receiving host. We choose the
total flow size as 30KB, 40KB, 50KB, and 60KB. All the short
flows need to compete with the background flows at the
bottleneck link. We repeat the test for 100 times with each
flow size.

pHost
Homa

NDP
REN

Av
er

ag
e 

FC
T 

(u
s)

0

100

200

300

Flow size
30KB 40KB 50KB 60KB

(a) AFCT

pHost
Homa

NDP
REN

99
th

-i
le

 F
CT

 (u
s)

0

100

200

300

Flow size
30KB 40KB 50KB 60KB

(b) 99th percentile FCT

Fig. 12. FCT with varying flow size.

In Fig. 12 (a), REN has the lowest AFCT across all
different flow sizes. Since REN drains the queue before the
arrivals of short flows, it successfully avoids the packet loss.
However, pHost and Homa suffer from persistent queue
backlog, which results in a higher probability of tail packet
loss and timeout. Although NDP uses packet payload cut-
ting to avoid packet loss and keep queue length around a
small threshold, the packet retransmission still enlarges the
FCT of short flows. For example, with the flow size of 60KB,
REN brings about∼58%,∼42% and∼43% AFCT reductions
over pHost, Homa and NDP, respectively. The same trend is
observed for the 99th percentile tail FCT. As shown in Fig.
12 (b), REN gets the smallest 99th FCT and achieves great
improvement for short flows.
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Fig. 13. CPU overhead.

Finally, we evaluate the system overhead of REN. The
marking packets function of REN is implemented on DPDK
switch, resulting in computing overhead in the enqueue and
dequeue modules. In this test, we measure the CPU utiliza-
tion, which is the ratio of the CPU cycles of each module
to that of whole forwarding process. REN simply marks the
packets using the build-in ECN function. Thus, as shown
in Fig. 13, REN still achieves very low CPU utilizations
in both enqueue and dequeue operations. Moreover, REN
maintains only 16Bytes for ql, ti, and a timestamp state at
each port. Therefore, a 32-ports switch only needs to main-
tain 512Bytes of state information. The switch measures the
under-utilization and over-utilization states at each port and
does not record per-flow information. Thus, the required
SRAM resources for REN are independent of the number of
flows.
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Fig. 14. The 99th percentile slowdown.

6 SIMULATION EVALUATION

We conduct NS2 simulations to evaluate REN performance
in a large-scale network topology with typical datacenter
workloads. We measure the average FCT and 99th percentile
FCT of short flows, the throughput of long flows, and the
average flow completion time of all flows. We compare per-
formances of REN, DCTCP, and the state-of-the-art receiver-
driven transport protocols including pHost, Homa, NDP,
ExpressPass [7] and Aeolus [8]. We set the ExpressPass
parameters α and winit to 1/16, as recommended in Ref.[7].

And Aeolus is integrated with the latest receiver-driven
protocol Homa.

Network topology:
We use a common leaf-spine topology with 8 top-of-rack

(ToR) switches and 8 core switches [2], [8]. Each ToR switch
connects to 48 hosts and the whole network has 384 end-
hosts. The bandwidth of each link is 40Gbps and the round
trip propagation delay is 10µs. Thus, the oversubscription
ratio is 6:1. The packet size and switch buffer size are 1.5KB
and 128KB, respectively.

Traffic workloads: We use four traffic workloads of data
mining, web search, Hadoop cluster and cache follower,
which are typical applications in productive data center
networks [2], [3], [7]. Specifically, the four realistic work-
loads cover a wide range of average flow sizes ranging
from 64KB to 7.4 MB. The distributions of flow size are
heavy-tailed with about more than 90% bytes contributed
by less than 10% large flows. For example, in data mining
application, more than 80% of flows are smaller than 100KB
and about 10% flows are larger than 1MB. We use all-
to-all communication pattern, and generate flows between
randomly selected host pairs in the all-to-all transmissions
and the arrival rates of flows obeys a Poisson process. We
simulate seven traffic loads ranging from 0.1 to 0.7.

6.1 Performance Under Realistic Workloads

To provide a comprehensive test, we measure the 99th

percentile tail slowdowns of all flows in four realistic
workloads at 0.5 network load. The simulation results with
increasing flow size are shown in Fig. 14. The slowdown is
defined as the ratio of the actual flow completion time to
the ideal time required to complete the flow transmission
without experiencing any congestion. The x-axis for each
figure in Fig. 14 is scaled to match the distribution of flow
size. Specifically, the axis is linear in the total number of
flows and each tick is corresponding to 10% of all flows in
workload.

Fig. 14 shows the 99th percentile tail slowdown as a
function of flow size at 0.5 network load. In general, the
tail latency of REN is lower than that under the other four
receiver-driven protocols and DCTCP. Since DCTCP, pHost,
NDP and Homa are not able to actively reduce the queue
length and timely fill up the spare bandwidth, the FCTs of
short and long flows are larger than those under REN across
the four workloads, resulting in worse slowdown perfor-
mance than REN. Moreover, the performance improvement
of REN is normally higher for larger flows in each workload,
and the similar trend is observed in the workloads with
larger average flow size since REN has more opportunities
to drain queue and seize spare bandwidth. Specifically, in
data mining and cache follower workloads, REN improves
slowdown by ∼9%, ∼51%, ∼39%, ∼4%, ∼6%, ∼21% and
∼50%, ∼35%, ∼29%, ∼14%, ∼18%, ∼20% with the flow
size of 11054 packets and 1809 packets over DCTCP, pHost,
Homa, NDP, ExpressPass and Aeolus, respectively.

Next, we measure the FCT of short flows and throughput
of long flows under varying load. The test results of four
workloads are shown in Fig. 15∼Fig. 18.

As shown in Fig. 15 (a), Fig. 16 (a), Fig. 17 (a) and
Fig. 18 (a), REN achieves the lowest average FCT of short
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Fig. 15. Data Mining application.
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Fig. 16. Web Search application.
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Fig. 17. Hadoop Cluster application.
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Fig. 18. Cache Follower application.
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Fig. 19. AFCT of all flows in 4 realistic workloads.
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flows with varying load from 0.1 to 0.7. Since REN drains
queue by controlling the sending rate according to the
marked grant packets, the short flows experience much
lower queueing delay and thus obtain lower FCT compared
to the other receiver-driven protocols and DCTCP. Since
REN starts the transmission at line rate while ExpressPass
wasting the first RTT to request the credits, REN reduces the
average FCT of short flows by up to∼75% than ExpressPass.

Fig. 15 (b), Fig. 16 (b), Fig. 17 (b) and Fig. 18 (b) show
that, REN significantly reduces the tail FCT for short flows.
Specifically, in data mining workload, REN reduces the 99th

percentile FCT for short flows by ∼73%, ∼68%, ∼52%,
∼33%, ∼56% and ∼28% at 0.7 load over DCTCP, pHost,
Homa, NDP, ExpressPass and Aeolus, respectively.

In Fig. 15 (c), Fig. 16 (c), Fig. 17 (c) and Fig. 18 (c),
REN significantly outperforms pHost and Homa in long
flow throughput across all workloads, because REN is able
to timely seize the free bandwidth by marking packets to
notify the senders to fill the packet gap accordingly. In
addition, REN obtains larger improvements in data min-
ing and web search scenarios than Hadoop cluster and
cache follower applications. The data mining and web
search applications have more large flows, which cannot
grab the spare bandwidth after experiencing congestion
under the traditional receiver-driven protocols. Therefore,
REN achieves more improvements in link utilization un-
der data mining and web search applications. Moreover,
under heavier load, REN performs much better because
it has more opportunities to grab the released bandwidth.
Since ExpressPass uses per-flow ECMP to ensure in-order
transmssion, the link utilization is degraded compared with
NDP and REN, which use per-packet loader balancing.

The average FCT of all flows are shown in Fig. 15 (d),
Fig. 16 (d), Fig. 17 (d) and Fig. 18 (d). As the load increases,
REN performs better than the other protocols across all
workloads, because it achieves the ultra-low queueing delay
and high link utilization simultaneously by adjusting the
sending rate based on explicit notifications. Specifically, in
web search workload, REN reduces the AFCT of all flows
by ∼6%, ∼41%, ∼22%, ∼2%, ∼8% and ∼11% at 0.7 load
over DCTCP, pHost, Homa, NDP, ExpressPass and Aeolus,
respectively. In cache follower workload, REN reduces the
AFCT of all flows by ∼36%, ∼43%, ∼30%, ∼9%, ∼17%
and ∼21% at 0.7 load over DCTCP, pHost, Homa, NDP,
ExpressPass and Aeolus, respectively.

To provide a comprehensive experiment, we compare
REN with the state-of-the-art receiver-driven protocols
when the oversubscription of the topology is 1. We use a
leaf-spine topology with 8 spine switches, 8 leaf switches
and 64 servers. Each leaf switch connects to 8 hosts. All
the links have 40Gbps bandwidth and the base RTT is set
to 10µs. We use the same 4 realistic workloads as above
to evaluate REN. Fig. 19 shows the average FCT in 4 real-
istic workloads under varying network loads. Though the
oversubscription of the topology is 1, REN still reduces the
average FCT by up to ∼18%, ∼33%, ∼26%, ∼4%, ∼13% and
∼17% over DCTCP, pHost, Homa, NDP, ExpressPass and
Aeolus, respectively. The reason is that when the sources
from multiple leaf switches send flows to different desti-
nations from a same leaf switch, congestion and packet loss
occur on the spine switch. Therefore, after congestion occurs

and some flows are completed, there is spare bandwidth.
By using the under-utilization signal, REN seizes the free
bandwidth quickly. Although Aeolus solves the first-RTT
problem well, it cannot fill up the free bandwidth, resulting
in longer average FCT.

6.2 Many-to-many Communication Scenario

In many-to-many communication scenarios, the receiver-
driven protocols introduce a new challenge: a sender can
not immediately respond to all grants from different re-
ceivers. In such cases, the links connected to the receiver are
potentially wasted, resulting in performance degradation
especially at the heavy network load.

To address this issue, Homa implements the overcom-
mitment mechanism to improve link utilization. That is, a
receiver can send grants to multiple senders simultaneously
(i.e., degree of overcommitment is larger than 1). Even
though a sender cannot respond, the link can be fully uti-
lized by the other senders. In this test, we compare the REN
performance with Homa’s overcommitment mechanism in
a many-to-many communication scenario.

In this test, we use a leaf-spine topology with two ToRs,
each of which connects 40 senders. Each sender establishes 2
connections with 2 receivers under different ToRs. The other
simulation settings are as same as those in Section 6. We
measure the bottleneck link utilization and average queue
length with the varying responsive ratio of the senders. We
change the degree of overcommitment of Homa. The test
results are shown in Fig. 20.
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Fig. 20. The link utilization and queue length with varying responsive
senders.

As shown in Fig. 20 (a) and Fig. 20 (b), with the in-
creasing degree of overcommitment and ratio of responsive
senders, Homa achieves higher link utilization. However,
the queue length also increases at the same time. It is
hard for Homa to achieve good tradeoff between small
queue length and high link utilization with fixed degree of
overcommitment. For REN, once the bottleneck link is not
fully utilized, the marked packets will notify the sender to
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increase sending rate to sustain high link utilization. Mean-
while, once detecting queue buildup, the switch notifies the
sender to decrease sending rate to reduce buffer occupancy.
Therefore, REN is able to obtain both near-zero queue length
and high link utilization.

6.3 Incast Scenario
The Incast scenario potentially causes performance deterio-
ration due to bursty traffic in data centers. In this section,
we test the effectiveness of REN under the Incast scenario.

We use the same leaf-spine topology and simulation
settings as in Section 6.2, except for the number of end-
hosts and ToRs. We generate the Incast traffic similar to
that in [3]. Specifically, M hosts under each of the first two
leaf switches act as servers, and two hosts under the third
leaf switch act as a client. Each client requests 100MB/M
bytes from M servers under the first two leaf switches,
and each server synchronously responds a fixed amount
of required data to the client. The client could not issue a
new round of requesting until it receives all responses in
the current round. Therefore, the completion time of the last
response in current round is the request completion time
(RCT). We repeat this pattern 100 times. In this test, we
vary the number of servers M from 50 to 200. Each server
generates 100MB/M data in a single flow.
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Fig. 21. Incast performance.

As shown in Fig. 21 (a), REN achieves higher link
utilization than the other receiver-driven protocols because
it actively utilizes the spare bandwidth. Moreover, each
of four transport protocols provides high link utilization
without experiencing Incast throughput collapse. Fig. 21
(b) shows the average RCTs of four schemes. Since REN
retains the proactive congestion control in the receiver-
driven transmission and uses marking-based feedback to
improve link utilization, it obtains lower RCT than the
others. In general, all of these protocols successfully avoid
performance degradation under the Incast scenario because
they effectively reduce the contention across flows to the
same destination by employing the conservative receiver-
driven congestion control.

6.4 Parameter Sensitivity
To provide timely feedback, REN measures the queue length
and packet interval with a sampling period. To evaluate
the parameter sensitivity of sampling period, we set up
a concurrent transmission scenario and test the impact of
sampling period under 0.2 and 0.8 network loads.

In this test, we use a dumbbell topology with multiple
pairs of end-hosts. The simulation settings are as same as
those in Section 6. At the beginning, two long-lived back-
ground flows fairly share the bottleneck link. Then the con-
current short flows start at the line rate. Since the network
dynamic has large impact on short flows, we measure the
AFCT and 99th percentile FCT of short flows with varying
sampling period.
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Fig. 22. Sampling period.

As shown in Fig. 22 (a), with different sampling periods,
REN generally achieves the satisfied FCT of short flows
under light load. Under heavy load, however, the tail FCT
of short flows increases greatly with larger sampling period
as shown in Fig. 22 (b). This result means that, under heavy
traffic load, it is hard to well control the queue length with
too large sampling period. On the other hand, the rate
adjustment with too small sampling period easily causes
frequent queue oscillation and utilization losses, resulting
in small increase of FCT. Therefore, we choose one round
trip propagation time as the sampling period in our design.

7 RELATED WORKS

Recent years have witnessed a series of novel trans-
port designs to achieve low latency and high through-
put in data centers. In general, these mechanisms can be
roughly divided into four categories: sender-based, rate-
based, explicit-based and receiver-driven ones.

As a classic representative of sender-based design,
DCTCP [1] marks packets according to queue length. The
arrival packet is marked via ECN when the queue length is
larger than the marking threshold. In this fashion, DCTCP
obtains small queueing delay and high throughput. To
meet the demand of deadline-aware flows, D3 [9] allocates
bandwidth to each flow according to application deadline
information. HULL [10] employs phantom queues to deliver
the congestion signal and reserves bandwidth headroom for
short flows to ensure low flow completion time. As a fine-
grained end-to-end congestion control, DCQCN [11] adjusts
the sending rate with the help of ECN marking to alleviate
the impacts of Priority-based Flow Control (PFC), such
as the head-of-line blocking and unfairness. TIMELY [12]
uses NIC timestamps and fast ACK turnaround methods
to accurately measure the round-trip time as the conges-
tion feedback, achieving high throughput and low latency
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without the the requirements of switch supports. Swift [13]
improves TIMELY by dividing end-to-end RTT into NIC-
to-NIC (fabric) delay and endhost delay to respectively
respond to congestion of fabric and endhost. By this way,
Swift provides a fine-grained delay signal for congestion
control, and adjusts the sending rate precisely. To quickly
respond to the sudden congestion and achieve both high
throughput and low latency, based on the existing conges-
tion control protocols (e.g. TIMELY and DCQCN), On-Ramp
[14] adds the one-way delay measurement to sense the
congestion. When the sudden congestion occurs, On-Ramp
quickly reduces the network latency by pausing the packets
sending. These protocols achieve relatively low queueing
delay and high throughput compared with traditional TCPs.
Under large traffic burstiness, however, these designs still
easily experience large queueing delay and even buffer
overflow.

To accelerate the convergence speed and achieve the
target rate rapidly, some rate-based approaches have been
proposed. PDQ [15] employs preemptive flow scheduling
through sophisticated rate calculation to reduce the flow
completion time. pFabric [16] implements priority queues
and isolates short and long flows to reduce the flow com-
pletion time. Fastpass [17] applies a centralized arbiter to
determine when each packet should be sent as well as the
path it should take. Karuna [18] uses priorities to segregate
the flows with or without deadline. Nevertheless, this kind
of mechanisms requires complicated control and global
scheduling, potentially resulting in performance degrada-
tion of short and tiny flows due to the time overhead in
centralized control and scheduling.

In wide area network (WAN), a variety of classic high
speed TCPs employ explicit feedback information to adjust
the sending rate to precisely match the available bandwidth
of bottleneck link. For example, XCP [19] leverages multiple
bits in packet header to deliver the load state of bottleneck
link to sender. According to the explicit feedback, the sender
regulates its congestion window size to achieve low queue-
ing delay and high link utilization. RCP [20] emulates the
processor sharing at router, which calculates a proper rate
for each flow and returns it through packet header to sender.
However, since these protocols are designed for WAN, they
do not allow the flow to start at line rate, resulting in slow
convergence for short or tiny flows in data center. Therefore,
several explicit feedback protocols are proposed for data
center networks. For example, under the window-based
protocol TFC [21], the switch allocates the proper window
size for each flow through the measurement of both net-
work capacity and number of active flows. However, before
starting transmission, each flow still needs one more round-
trip time to get the initial window size, which is detrimental
for short flows. With the popularity of in-network telemetry
(INT) technique, HPCC [22] controls the sending rate based
on the fine-grained link load information. However, this
design generally needs extra feedback bits in packet head,
making it hard to strike a balance between the small traffic
overhead and precise rate adjustment.

For achieving near-zero queueing delay and ultra-
low packet loss, many receiver-driven schemes have been
proposed. pHost [3] separates scheduling strategies from
the network fabric and leverages distributed per-packet

scheduling at the end hosts. Moreover, it requires no switch-
support and achieves high performance. ExpressPass [7]
effectively controls congestion even before sending data
packets via shaping the flow of credit packets at the switch.
NDP [4] assigns new flows with full rate at the beginning.
When the queue length exceeds the given threshold, the
switch trims the packet payloads and gives the header
of trimmed packets the highest priority. Once receiving a
header, the receiver immediately sends an NACK to inform
the sender to retransmit the packet. For each received header
or packet, the receiver generates a pull packet and utilizes
pull packets to control the sending rate. Homa [2] utilizes
in-network priority queues and the shortest remaining pro-
cessing time first (SRPT) policy to guarantee low latency
for short messages. Moreover, it also employs overcommit-
ment mechanism to ensure efficient bandwidth utilization in
many-to-many communication scenarios. Aeolus [8] makes
an adequate utilization of spare bandwidth in the first RTT,
rather than sending packets blindly. Through distinguishing
traffic at the end side and implementing selective dropping
in the network, Aeolus permits aggressive fast start without
affecting the traffic scheduled by proactive congestion con-
trol. Polo [23] marks the packets with ECN when the queue
length exceeds a small threshold, preventing the large queue
backlog. And it uses high priority packets and keeps them
flight to detect packet loss, recovering the lost packets as fast
as possible. AMRT [24] exploits ECN to mark packets on
underload link, and rises the sending rate according to each
marked packet, alleviating the under-utilization problem.
Unfortunately, pHost and Homa may suffer from low link
utilization and queue buildup under high dynamic traffic
scenario, leading to a suboptimal network performance.
ExpressPass wastes the first RTT of a new flow to wait for
credits. NDP and Aeolus keep the queue length around the
threshold through cutting payload and dropping packets,
respectively. However, these methods increase the proba-
bility of packet loss (or payload cut). Though they could
retransmit the packet quickly, it is still detrimental for short
flows’ FCT. Though Polo keeps the queue length around a
small threshold, it still increases the delay in network. Since
AMRT has no slow down scheme, it still suffers from queue
backlog and network congestions.

Recently, a new congestion control protocol ABC [25]
is proposed for time-varying wireless links. It marks each
packet with the accelerate or brake signals on the router
output port according to port load. The sender respectively
increases or decreases the size of congestion window when
receiving the accelerate or brake signals to achieve high
throughput and low latency. However, as a window-based
protocol, ABC begins transmission with the slow start phase
and needs several RTTs to reach full bandwidth, making it
unsuitable for short or tiny flows in data centers. Moreover,
since ABC is not receiver-driven, it cannot schedule flows
with different priorities at the receiver in many-to-one com-
munication scenarios.

Compared with the above transport approaches, REN
delivers the under- and over-utilization information of bot-
tleneck link via only two reserved ECN bits in the packet
header. With the explicit notification from switch, REN
tackles the bursty traffic well, achieving high link utilization
and zero queueing latency.
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8 CONCLUSION

We presented REN, a new receiver-driven transport protocol
for data center networks. REN utilizes the explicit under-
and over-utilization notifications from switch to adjust the
sending rate. It provides much better performance than
current receiver-driven proposals which aggressively start
transmission at line rate and cannot seize the spare band-
width due to the conservative receiver-driven transmission.
Moreover, the real implementation of REN is not expensive
in terms of CPU utilization. In our DPDK implementation
and large-scale simulations, REN exhibits excellent low-
latency and high-utilization behaviors. It reduces the av-
erage FCT by up to 68% over the state-of-the-art receiver-
driven proposals.
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