
AutoPipe: Automatic Configuration of Pipeline Parallelism in
Shared GPU Cluster

Jinbin Hu
Changsha University of Science and Technology

Changsha, China
jinbinhu@csust.edu.cn

Ying Liu
Changsha University of Science and Technology

Changsha, China
yingliu@stu.csust.edu.cn

Hao Wang
Hong Kong University of Science and Technology

Hong Kong, China
hwangdv@connect.ust.hk

Jin Wang∗
Hunan University of Science and Technology

Xiangtan, China
jinwang@hnust.edu.cn

ABSTRACT
As training Deep Neural Network (DNN) is time-consuming, people
resort to parallelization across multiple accelerators. A plethora of
solutions adopt data/model parallelization, but they suffer from fre-
quentweight synchronization overhead or resource under-utilization.
Recent work introduces pipeline parallelism to improve the utiliza-
tion of accelerators, however, most existing pipeline parallelism
approaches take a one-shot configuration, while ignoring the fluc-
tuation of available resources, e.g., bandwidth and GPUs. Moreover,
the heuristic work partition methods oversimplify the computa-
tion and communication process, leading to sub-optimal results.
To address this challenge, we present AutoPipe, a self-adaptive
pipeline parallelism optimization solution. At its core, AutoPipe
introduces a reinforcement learning (RL) based work partition-
ing model, which takes into account both exact communication
procedure and dynamic state switching. To mitigate the stalls on
state switching, AutoPipe adopts layer-by-layer computation un-
der switching. We have implemented an AutoPipe prototype and
evaluated it via testbed experiments. Our results show that the
AutoPipe-enhanced PipeDream can find better work partitioning
and benefit from dynamic configuration, outperforming the vanilla
solutions by up to 89% for exclusive tasks and 143% in dynamic
workloads. Furthermore, we show that AutoPipe can also work well
with other pipeline parallelism schemes and achieve considerable
performance gains.

CCS CONCEPTS
• Computer systems organization → Parallel architectures; •
Computing methodologies→ Distributed algorithms.

KEYWORDS
Distributed Training, Deep Neural Network, Pipeline Parallelism,
Reinforcement Learning
∗Jin Wang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1793-2/24/08
https://doi.org/10.1145/3673038.3673047

ACM Reference Format:
Jinbin Hu, Ying Liu, Hao Wang, and Jin Wang. 2024. AutoPipe: Automatic
Configuration of Pipeline Parallelism in Shared GPU Cluster. In The 53rd
International Conference on Parallel Processing (ICPP ’24), August 12–15, 2024,
Gotland, Sweden. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3673038.3673047

1 INTRODUCTION
The sizes of DNN models grow explosively due to the increas-
ingly complex applications [1]. To accelerate the model training,
in practice, machine learning (ML) practitioners leverage parallel
computing to spread intensive computation across multiple acceler-
ators, e.g., GPUs [2]. Previous solutions [3] often adopt intra-batch
parallelism, which focuses on the parallelization within one iter-
ation. The most common intra-batch parallelism approaches are
data parallelism and model parallelism. However, data parallelism
suffers from high communication cost, recent work shows that the
communication overhead can account for 90% over 32 GPUs [4]. For
model parallelism, while it has less communication, the computing
resources are under-utilized due to the computation dependency
among each layer.

To address the issues of high communication overhead and low
resource utilization, recent work proposes pipeline parallelism [4, 5].
To reduce the communication volume, pipeline parallelism parti-
tions different layers of the model to different workers, just like
the model parallelism. Meanwhile, to avoid the idle of computation
resources, it injects multiple batches of different iterations into
the model concurrently, therefore the training is inter-batch. The
inter-batch introduces weight staleness and inconsistency issues [4].
To address the above issues, recent work GPipe [5] introduces a
synchronous pipeline approach. It divides the mini-batch into dif-
ferent micro-batches and pipelines them, the weight updating is
only performed when all micro-batches of the mini-batch complete.
While GPipe guarantees the consistency, it still does not utilize
the computing resources well. To further improve the resource
utilization, PipeDream [4] releases the synchronization require-
ment, it only makes sure that in the same GPU and mini-batch, all
forward passes and backward passes have the same weights via
snap-shooting different versions of weights. Follow-up works, e.g.,
DAPPLE [30], Chimera [31], point out that such an asynchronous
approach impacts the training accuracy and propose synchronous
training framework focusing on large-scale neural networks.

443

https://orcid.org/0000-0001-8216-9683
https://orcid.org/0000-0002-7086-706X
https://orcid.org/0000-0001-9883-2400
https://orcid.org/0000-0001-5473-8738
https://doi.org/10.1145/3673038.3673047
https://doi.org/10.1145/3673038.3673047
https://doi.org/10.1145/3673038.3673047
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673038.3673047&domain=pdf&date_stamp=2024-08-12

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jinbin Hu, Ying Liu, Hao Wang, and Jin Wang

Worker 1

Worker 2

Parameters

Synchronization

Time

F1
1

F2
1

F1
2

F2
2

B2
1

B1
1

B2
2

B1
2

(a) Data Parallelism

F1
1Worker 1

Worker 2

Time

F2
1

B2
1

B1
1

F1
2

F2
2

B2
2

B1
2

(b) Model Parallelism

F1
1Worker 1

Worker 2

Time

F2
1

B2
1

B1
1

B1
2

F1
2

F2
2

B2
2

(c) Pipeline Parallelism

Figure 1: Different parallelism schemes. Here we show the timeline of training two batches on two workers. “F” refers to
forward propagation and “B” refers to backward propagation. The subscript indicates the layer of the model and the superscript
indicates mini-batch (in data parallelism) or iteration (in model/pipeline parallelism). We assume the model only has two
layers, the forward and backward propagation cost the same time. (a) illustrates the process of data parallelism, which makes
full use of computing resources when performing computation. However, it brings the cost for communication of parameters.
(b) illustrates the process of model parallelism. We observe the under-utilization of computing resources. (c) illustrates the
process of pipeline parallelism. It has better GPU utilization and is free of synchronization cost.

However, we observe that both synchronous and asynchronous
pipeline parallelism solutions ignore the fluctuation of available
resources during the long time training. Currently, to facilitate DNN
training, enterprises or private users typically setup a GPU cluster
shared by multi-jobs [6]. In a shared GPU cluster, the available
resources, e.g., bandwidth and GPUs, for each job vary over time.
Recent work [7] observes three distinct factors can affect cluster
utilization, i.e., gang scheduling, locality constraints and failures
during training.

Meanwhile, the performance of pipeline parallelism, i.e., uti-
lization of GPUs, is highly related to work partition [4], which
determines how to assign the computation of each layer to the par-
ticipating GPUs. Existing pipeline parallelism solutions establish
work partitions based on the available GPUs and bandwidth at the
start of training, and these partitions remain fixed. However, the
DNN training is notoriously time-consuming, which can take hours
or days [7]. During the training, if the resources state changes, e.g.,
new jobs acquire the shared GPUs or bandwidth, the previous work
partition will lead to sub-optimal performance.

A straw-man solution is to apply work partition whenever avail-
able resources change. However, this method has drawbacks, par-
ticularly in environments with frequent resource fluctuations. Each
time a new work partition is applied, workers are assigned new
tasks, interrupting the current training and potentially affecting
performance. Moreover, calculating a new work partition without
considering the previous state overlooks possible improvements. A
more refined strategy would involve designing new partitions that
take into account the last state, thereby minimizing the impact on
active workers by strategically reassigning tasks. Furthermore, we
observe that almost all existing solutions [4, 30–32, 36] take heuris-
tic approaches to get the work partition. For example, the classic
pipeline parallelism, i.e., PipeDream [4], simplified the modeling of
work partition by assuming an all-reduce communication pattern
within the workers of the same layer.

To improve pipeline parallelism in a shared GPU cluster, we
introduce AutoPipe, an automatic configuration framework, which
is self-adaptive to the available resources. At its core, AutoPipe con-
sists of three key techniques: 1) communication-aware pipeline: Au-
toPipe profiles the integrated communication process, which takes
the bandwidth variation into consideration. 2) RL-based automatic
configuration: previous solutions apply Dynamic Programming
(DP) to work partition problem. However, when considering the

real communication, the problem becomes complicated and time-
consuming. Reinforcement Learning (RL) is proved to solve such
dynamic optimization problems quickly and effectively [12, 14]. 3)
fine-grained state switching: simply stopping the pipeline when-
ever we reassign each worker’s tasks can lead to resource wastage.
Therefore, AutoPipe applies a layer-by-layer switching to maintain
the pipeline while changing the task assignment.

We have implemented an AutoPipe prototype to support DNN
training based on PipeDream [4]. The key components include: 1) a
resource changing detector, which is used to monitor the available
bandwidth and GPUs; 2) the training of the RL model for work
partition; 3) a scheduler for state switching and executors in the
worker side. We further integrate AutoPipe into PyTorch [8], a
well-known ML framework.

We evaluate AutoPipe on our testbed with 10 NVIDIA P100 GPUs
and 10/25/40/100Gbps networks. We test AutoPipe with different
DNNs and also provide a deep dive into the effectiveness of each
design component. The experimental results show that AutoPipe
outperforms PipeDream and vanilla framework by up to 1.89× and
2.77×, respectively. We also observe that our RL-based solution can
further improve the overall training performance when AutoPipe is
deployed on multiple jobs. Finally, we apply the idea of AutoPipe to
other latest pipeline parallelism solutions [30–32]. The evaluation
shows that AutoPipe can further improve these pipeline parallelism
optimization.

In summary, this paper makes the following contributions:

• We are among the first to identify the sub-optimal work partition
of current pipeline parallelism in a shared GPU cluster.

• We apply reinforcement learning to find the optimal partition,
which is efficient and obtains considerable performance gains.

• We fully implement our algorithm, integrate it into PyTorch, and
evaluate it on a real testbed with multi-GPUs.

2 BACKGROUND
2.1 Pipeline Parallelism
To accelerate DNN training, distributed training is widely used.
There are mainly three types. We illustrate and compare them in
Figure 1, here we focus on the pipeline parallelism. Different from
previous intra-batch parallelism, pipeline parallelism spansmultiple
iterations, which is so-called inter-batch parallelism [4]. Inter-batch

444

AutoPipe: Automatic Configuration of Pipeline Parallelism in Shared GPU Cluster ICPP ’24, August 12–15, 2024, Gotland, Sweden

parallelism can achieve better performance due to less communi-
cation and the overlapping of communication and computation.
Pipeline parallelism leverages pipelining optimization based on
model parallelism. As we can see in figure 1 (c), worker 1 injects
two mini-batches into the pipeline and performs the FP of the first
layer. Once the FP of the first mini-batch is completed, worker 1
transmits the output to worker 2, while the first layer FP of the
second mini-batch is simultaneously started. Worker 2 starts the
BP on a mini-batch once the FP completes. For the BP, worker 2
asynchronously sends the gradient to worker 1 while performing
the computation of the second mini-batch. The literatures present
two kinds of pipeline parallelism according to the synchroniza-
tion requirement [4, 5, 30–32, 34–36], i.e., synchronous pipeline
parallelism and asynchronous pipeline parallelism.
Synchronous pipeline parallelism. All inputs from the last
flush use the same weights. The timeline of pipeline can be divided
into FP pass and BP pass. GPipe [5] can be categorized as a typical
synchronous pipeline parallelism. GPipe is the improved version
of naive model parallelism which overcomes the low computa-
tion resource utilization and memory limitation of GPU. In GPipe,
each mini-batch is divided into multiple smaller micro-batches. The
micro-batches are trained in a pipelined manner, therefore, multiple
GPUs can train different parts of the model at the same time. Con-
sidering the memory cost, GPipe recomputes the FP and makes sure
the micro-batches of the same mini-batch pass all GPUs sequen-
tially. Therefore, it sacrifices the performance and still has room for
pipeline throughput improvement. Here we list other recent work
on synchronous pipeline parallelism.

• DAPPLE [30] combines data parallelism with pipeline paral-
lelism, addressing critical issues such as improving computing
efficiency, ensuring model convergence, and reducing memory
usagewithout adding computing costs. It designs a planner based
on dynamic programming to solve the partition and placement
of the hybrid parallelism.

• Megatron-LM [34] is a large language model training framework
that effectively combines tensor and pipeline model parallelism
for training large-scale transformer-based networks. It specifi-
cally addresses the challenges of training models with a massive
number of parameters, optimizing both computing efficiency
and memory usage.

• Chimera [31] effectively maps stages of the model in linear and
opposite orders across two pipelines, optimizing the execution
of micro-batches. This unique configuration significantly re-
duces idle times (bubbles) in both forward and backward passes.
Chimera’s design is adaptable to a varying number of micro-
batches, ensuring high utilization of resources even with con-
straints for model convergence.

Asynchronous pipeline parallelism. To fill up the pipeline,
the weights of each worker may be stale and delayed. These ap-
proaches [4, 32, 35, 36] are proposed to improve the utilization of
GPU, they allow asynchronous (thus faster) weight to update as
long as enough gradients are accumulated. PipeDream [4] is one of
the representatives. PipeDream renders multiple GPUs concurrent
work by simultaneously injecting multiple mini-batches into the
pipeline. To mitigate the weight inconsistency issue, PipeDream

snapshots the weights of each active mini-batch. However, asyn-
chronous pipeline faces inconsistent weight and staleness issues,
because the mini-batches are cross-trained. Besides PipeDream, we
list three recent works on asynchronous pipeline parallelism.
• PipeMare [36] addresses the hardware efficiency and memory
cost issues commonly associated with pipeline parallel train-
ing. It introduces a robust training method that tolerates asyn-
chronous updates during pipeline parallel execution without
sacrificing utilization or memory.

• Kosson, Atli, et al. [35] explore the use of small batch fine-grained
pipelined backpropagation to eliminate the fill and drain over-
head, by updating weights without the need to first drain the
pipeline. To mitigate the accuracy downgradation caused by the
asynchronicity, they introduce Spike Compensation and Linear
Weight Prediction.

• PipeDream-2BW [32] focuses on memory-efficient pipeline par-
allelism for training large DNN models with billions of parame-
ters. It uses a novel pipelining and weight gradient coalescing
strategy along with double buffering of weights to ensure high
throughput, lowmemory footprint, andweight update semantics
similar to data parallelism.

Work partition. In pipeline parallelism, the partitioning of the
model, i.e. work partition and the choice of pipeline depth, has a
huge impact on the GPU utilization and the training speed. Existing
pipeline parallelism schemes for work partitioning primarily fall
into three categories. The first category involves evenly splitting
of structurally uniform models like Transformer, exemplified by
Megatron-LM [34], PipeDream-2BW [32], and Chimera [31]. The
second category has no generic work partition strategy, it only of-
fers manually designed work partition schemes for specific models
used in experiments, such as PipeMare [36]. The third category
designs a universal work partition algorithm, utilizing Dynamic
Programming (DP) to find optimal work partition strategies, seen
in PipeDream [4] and DAPPLE [30]. The first two methods are rela-
tively simple and lack versatility, so we focus on the third category.
Since the work partition algorithms of DAPPLE and PipeDream
are similar, with the former targeting synchronous and the latter
asynchronous scenarios, we will primarily discuss PipeDream. For
the work partition in PipeDream, it first performs the profiling,
which records three numbers for each layer, i.e., the total computa-
tion time, the size of the output activations and the size of weight
parameters. Then, based on the profiling results, it leverages DP
to compute: 1) a partitioning of layers with the form of stages; 2)
number of workers for each stage; 3) optimal number of on-the-fly
mini-batches to fill the pipeline. The model of DP simplifies the com-
munication, it assumes that the network topology is hierarchical
and each level has the same bandwidth.

2.2 Automatic Configuration
Our approach strives to achieve an automatic configuration of
pipeline parallelism. Here we introduce two typical scenarios of
automatic configuration.
Flow scheduling. Flow scheduling is a classical problem in dat-
acenter networks [11, 17]. Previous works make the big-switch
assumption, i.e., the network has full bisection bandwidth, and
simplify the flow scheduling problem to the issues of deciding the

445

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jinbin Hu, Ying Liu, Hao Wang, and Jin Wang

flow sending order [33]. A widely used flow scheduling method-
ology is strict priority queueing with preemption and it is often
implemented as a multi-level feedback queuing with 𝐾 priority
queues. The challenge is to determine the demotion thresholds of
each queue. Previous solutions [10] apply a static threshold configu-
ration. However, the flow distribution and available bandwidth vary
in the datacenter, and they affect the choice of optimal thresholds.
Recent work AuTO [12] proposes an end-to-end automatic traffic
optimizations system, which applies deep reinforcement learning
(DRL) to handle the thresholds choosing problem.
Communication scheduling. DNN model has a layer-wise struc-
ture, which makes it possible to overlap the communication and
computation among different layers. Further, recent works [13, 14]
propose communication scheduling strategies. ByteScheduler [13]
performs tensor partition to enable the preemptive scheduling.
There are several hyper-parameters which determine the efficiency
of communication scheduling in ByteScheduler. The dynamic chang-
ing resources, i.e., available bandwidth and GPUs, also impact the
choosing of these hyper-parameters. To perform automatic configu-
ration for the communication scheduling, AutoByte [14] enhances
the ByteScheduler with a meta-network, which takes the system’s
runtime statistics as its input and output predictions for speedup
under specific configurations.

3 MOTIVATION
3.1 Pipeline Utilization in Pipeline Parallelism
In this section, we provide three key observations on the blemishes
of existing pipeline parallelism solutions, which limit the utilization
of computation resource.
Observation 1: Existing configurations are all one-shot. The
existing configuration is determined before the training starts and
stays the same during the training. Therefore, the fluctuation of
bandwidth or computation resource may cause the previous opti-
mal configuration to become stale. A recent measurement of Mi-
crosoft [7] shows that more than half of the training jobs complete
in tens minutes. However, about 30% jobs may suspend during
the training. Therefore, during the lifetime of a training job, other
shared GPU jobs may start, complete or suspend, which causes
the fluctuation of GPU resources. The fluctuation of bandwidth is
more common, since non-DNN jobs can also impact the available
bandwidth.

To find a pipeline parallelism solution for a dynamic environ-
ment, a straw-man approach is to perform work partition when-
ever the available resource state changes. However, two issues exist
for this straightforward approach. 1) Calculation cost: PipeDream
needs to re-profile whenever each resource changes. However, the
profiler of PipeDream needs to monitor 1000 mini-batches. In addi-
tion, the calculation for new work partition also costs time, up to 8
seconds in the experiments of PipeDream [4]. 2) State switching
cost: after updating the work partition, the task assigned to each
worker will be changed. Therefore, we need to pause the train-
ing. Meanwhile, the flow line requires a restart phase, i.e., startup
starts in Figure 2, which brings bubbles and reduces the pipeline
utilization.

To minimize the cost of switching during pipeline parallelism,
it is important to consider the state of the current work partition.

Worker 1 1 2 3 4 1 1 5 2 2 6 3 3 7 4

1 2 3 4 1 1 2 2 5 3 3 6 4 4 7

1 2 3 4 1 1 2 2 3 3 5 4 4 6 5 5

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6

Worker 2

Worker 3

Worker 4

Time

Startup State Steady State

Forward Pass Backward Pass Idle

Figure 2: An ideal case of filling the pipeline in PipeDream.
Note that the ideal case still needs time for the startup of the
pipeline.
Typically, fluctuations in bandwidth and computing resources are
localized, affecting only a few GPUs or links at any given time. This
insight allows for the maintenance of most workers’ current tasks
while computing a new work partition. Additionally, to avoid the
issue of stale parameters, a method like PipeDream’s weight stash-
ing can be employed. This involves maintaining multiple versions
of parameters in each worker, enabling fine-grained state switching
of different weights to preserve pipeline continuity.
Observation 2: Existing models oversimplify the training.
The efficiency of a pipeline largely hinges on two elements: the as-
signment of tasks to workers (work partition of the model) and the
number of mini-batches in flight. To identify the optimal configura-
tion, PipeDream utilizes Dynamic Programming (DP) to calculate
these factors. It starts by profiling three crucial values for each
layer: the computation time, the size of the output activations and
input gradients, and the size of weight parameters required for
communication.

However, PipeDream’s modeling has two major drawbacks. 1)
PipeDream only measures the computation speed of one exclu-
sively used GPU. However, there may be multiple types of GPUs in
the shared GPU cluster, e.g., P100, V100, A100. Meanwhile, when
multiple jobs share the GPU, the actual training speed may change
significantly. 2) PipeDream makes too many assumptions on the
modeling of communication between GPUs. It assumes a hierarchi-
cal network topology inwhich the bandwidthswithin the same level
are identical. PipeDream assumes all_reduce collective communi-
cation for the workers of the same layer, the actual communication
may use other approach, e.g., parameter server.

A naive improvement solution would be to patch the current
model of PipeDream to solve the above problems. However, two
issues exist. First, to fetch the real-time and more precise compu-
tation and communication speed, we need to perform profiling
periodically and record more detailed data, i.e., the computation
speed of each layer in each worker, the communication volume
and speed among each worker. Second, the execution of DP will
be more time-consuming. PipeDream shows that the running time
cost of its simplified work partition is in the order of seconds. The
complicated model will significantly increase the solution time. Our
validation shows that the complicated model takes tens of minutes,
which may be even longer than the overall training time.
Observation 3: Existing methods fail to fill the pipeline in
practice. In traditional model parallelism, GPU resource utilization

446

AutoPipe: Automatic Configuration of Pipeline Parallelism in Shared GPU Cluster ICPP ’24, August 12–15, 2024, Gotland, Sweden

Actual
Optimal

Sp
ee

d
(im

g/
se

c)

0

50

100

150

200

AlexNet
DenseNet

ResNet50
VGG16

(a) Model influence

Actual
Optimal

Sp
ee

d
(im

g/
se

c)

0

20

40

60

10Gbps
25Gbps

40Gbps
100Gbps

(b) Network speed influence

Figure 3: Impact of dynamic changing bandwidth on
PipeDream.

Actual
Optimal

Sp
ee

d
(im

g/
se

c)

0

50

100

150

200

AlexNet
DenseNet

ResNet50
VGG16

(a) Model influence

Actual
Optimal

Sp
ee

d
(im

g/
se

c)

0

20

40

60

10Gbps
25Gbps

40Gbps
100Gbps

(b) Network speed influence

Figure 5: Impact of concurrent distributed training jobs on
PipeDream.

is significantly low, with only one GPU computing at any given mo-
ment. The primary advantage of pipeline parallelism is its ability to
utilize all GPUs through effective pipelining. PipeDream tries to fill
the pipeline. However, we find that it is difficult for PipeDream to fill
the pipeline in practice. Figure 2 shows an ideal case of PipeDream
filling the pipeline. In this case, after the startup state, PipeDream
can achieve 100% utilization of the pipeline. However, several as-
sumptions need to be satisfied for this case to be established, which
are nearly impossible in practice. 1) The communication across
four workers, i.e., Worker 1, Worker 2, Worker 3 and Worker 4, is
negligible; 2) The computation time of each layer is the same; 3)
The forward passes take exactly half time of the backward pass
(e.g., the forward pass of batch 1 occupies 4 blue time units, while
the backward pass of batch 1 occupies 8 yellow time units).

3.2 Resource sharing in GPU cluster
To verify the above analysis, we perform three groups of exper-
iments on our testbed to compare the actual training speed of
PipeDream (use the original work partition configuration) with
that of the optimal (re-execute the work partition) under the dy-
namic environment. Considering the generality, for each group, we
test different models and speeds of the network.
Dynamic changing of bandwidth. We only consider the dy-
namic changing of bandwidth in the first experiments. Other com-
munication intensive tasks, e.g. uploading/downloading data and
contention of other jobs, may cause the fluctuation of available
bandwidth of current jobs. To show the influence of the bandwidth
on PipeDream, we assume the current job exclusively occupies the
bandwidth initially. When the measurement starts, the available
bandwidth is halved, we measure the training speed of PipeDream
at this moment. As a comparison, we perform work partition again
according to the halved environment and measure the training

Actual
Optimal

Sp
ee

d
(im

g/
se

c)

0

50

100

150

200

AlexNet
DenseNet

ResNet50
VGG16

(a) Model influence

Actual
Optimal

Sp
ee

d
(im

g/
se

c)

0

20

40

60

10Gbps
25Gbps

40Gbps
100Gbps

(b) Network speed influence

Figure 4: Impact of dynamic changing computation resource
(GPU) on PipeDream.

Actual
Optimal

Sp
ee

d
(im

g/
se

c)

0

200

400

600

800

AlexNet
DenseNet

ResNet50
VGG16

(a) Model influence

Actual
Optimal

Sp
ee

d
(im

g/
se

c)

0

50

100

150

200

250

10Gbps
25Gbps

40Gbps
100Gbps

(b) Network speed influence

Figure 6: Impact of the finishing of old distributed training
jobs.

speed . Figure 3 shows that for all models and different network
speeds, the training speed of PipeDream decreases when the band-
width changes, especially for the communication intensive models,
e.g., VGG16. Meanwhile, we find that the performance degradation
is more severe on the lower speed network, with a larger commu-
nication ratio. For example, the training speed under 10Gbps is
decreased by up to 55% compared to the optimal result.
Dynamic changing of GPU resource. For the second group,
we only consider the dynamic changing of computation resource,
i.e., GPU. Such scenario includes the starting or completion of
GPU-intensive tasks, e.g., image or video processing and single-
GPU job. We assume the exclusive occupation of GPU for current
job initially. When the measurement starts, we add an extra job
on each GPU to emulate the contention of GPU-intensive tasks.
In our experiment, the additional job is to train ResNet50 on the
ImageNet. Similarly, the baseline is that we still use PipeDream but
perform work partition again according to the new environment.
Figure 4 shows the impact of GPU resources changing. We find
that the changing of GPU resources has a significant impact on
PipeDream across four different models. In addition, with a higher
network speed, the performance degradation is more severe, due to
a relatively higher proportion of calculations. When the link speed
increases from 10Gbps to 100Gbps, the performance degradation
of training speed is increased from 39% to 45% compared with the
optimal speed.
The impact of multiple distributed training jobs. In a shared
GPU cluster, it is common and frequent for new distributed training
jobs joining and old jobs finishing or suspending [1]. Such cases
change both available bandwidth and GPU resource of current
jobs, which may make the current configuration of PipeDream
sub-optimal. Similar to the above two experiments, we measure the
training speed of the two different configurations before or after the

447

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jinbin Hu, Ying Liu, Hao Wang, and Jin Wang

starting of the new job. Figure 5 shows that the joining of a new job
also causes significant performance degradation of PipeDream un-
der four training models and various network speeds. The training
speeds are decreased by 36% and 60% under ResNet50 and 100Gbps,
respectively. All the above experiments (Figure 3 - Figure 5) show
the advantage of re-configuration when the resources are reduced.
In fact, we have the same conclusion with increased environment
resources. Figure 6 shows the reversed process of Figure 5, i.e., an
old distributed training job finishes. We can find that re-executing
the work partition (optimal) still be ahead of keeping the original
configuration (actual).

4 AUTOPIPE DESIGN
4.1 Overview
Design goals. The design of AutoPipe has three objectives. 1)
Optimal modeling: AutoPipe’s model aims to accurately reflect the
actual training process, including details like the current computa-
tion and communication speed of each worker; 2) Low time cost:
AutoPipe should respond to the dynamic resource changing in time
and providing work partition solutions that adapt to dynamic re-
source shifts promptly; 3) Fast switching: When transitioning to a
new work partition, AutoPipe prioritizes maintaining continuous
pipeline operation, aiming to avoid suspension or interruption of
the ongoing processes.
Challenges. Three challenges prevent us from achieving the de-
sign goals. 1) The current method, which employs Dynamic Pro-
gramming (DP) instead of exhaustive enumeration, has already
optimized the computation time for work partition to a great extent.
This makes any further optimization based on traditional mathemat-
ical modeling challenging. 2) Altering the work partition inevitably
brings additional overhead. This becomes particularly problem-
atic in environments with frequent resource changes, requiring
a strategic balance between reaction sensitivity and environmen-
tal fluctuations. 3) Switching work partitions necessitates pausing
the current batch’s training, as it alters each worker’s task. This
interruption unavoidably leads to blocking the pipeline, posing a
significant hurdle to maintaining continuous workflow.
AutoPipe overview. The core idea of AutoPipe is to apply RL to
gradually fine tune the worker partition solution. We chose RL for
its quick adaptation to complex settings, outperforming traditional
methods in speed and flexibility [12, 14]. Considering the state
switching cost, each worker partition reallocation only involves
two workers. We first apply meta-learning to fetch the mapping of
worker partition solution with the training speed. Then, without
the need for profiling, we can quickly find the optimal worker
partition of the next step. Due to the switching cost, we do not
always perform state switching, instead, we apply an RL model to
make decisions. In the following, we will introduce our pipeline
model to predict the actual training speed with a meta-network
and the RL model for determining whether to perform the new
worker partition. Then we describe the offline training and online
adapting for the two models. Finally, we show how to perform the
fine granularity state switching without suspending the pipeline.

Table 1: Profiling Metrics of AutoPipe

Symbol Shape Specification
𝐿 1 Total number of layers
𝑁 1 Total number of workers
𝑂𝑖 𝐿 ∗ 1 The size of output activations in layer 𝑖
𝐺𝑖 𝐿 ∗ 1 The size of input gradients in layer 𝑖
𝑃𝑖 𝐿 ∗ 1 The size of weight parameters in layer 𝑖
𝐵𝑖 𝑁 ∗ 1 The available bandwidth of worker 𝑖
𝐹𝑃𝑖, 𝑗 𝑁 ∗ 𝐿 FP computation time of layer 𝑗 in worker 𝑖
𝐵𝑃𝑖, 𝑗 𝑁 ∗ 𝐿 BP computation time of layer 𝑗 in worker 𝑖

4.2 Integrated Pipeline Model
Given that the previous modeling in PipeDream ignores the dynam-
ics of resources and oversimplifies the communication process, we
re-model the pipeline parallelism. We monitor more data compared
to the model of PipeDream. Meanwhile, considering the time cost,
we set a new goal for our model, predicting actual training speed
according to the worker partition. Instead of taking a heuristic
approach to solve the model, we use a learning-based approach.
Profiling the training. Compared to the PipeDream’s profiler,
our profiling mechanism considers the volatility and variability
of the resource. As shown in Table 1, AutoPipe first records the
model level metrics before training, i.e., the size of output activa-
tions, input gradients and weight parameters in each layer, these
quantities are constant during the training. AutoPipe also monitors
three variables, i.e., the available bandwidth of each worker, the
FP&BP computation time of each layer in each worker. Our profiler
works on the idea of not interfering with training. For the available
bandwidth of each worker, we measure it from the communication
speed of the last iteration. We observe that the ratio of the com-
putation time of each layer is almost constant. Therefore, we do
not need to record all 𝐹𝑃𝑖, 𝑗 and 𝐵𝑃𝑖, 𝑗 . We measure the ratios before
training, and obtain the speed of the certain layer (e.g., layer 𝑗) of
the worker (e.g., worker 𝑖) from the last iteration. Then we calculate
the 𝐹𝑃𝑖, 𝑗 and 𝐵𝑃𝑖, 𝑗 for worker 𝑖 based on the speed of layer 𝑗 and
the ratios.
Predicting the training time. PipeDream gives the partition so-
lution directly by simplifying the modeling. A dilemma here is that
over-simplistic modeling leads to sub-optimal solution, and close to
realistic modeling leads to too long calculation time. Actually, we do
not need to know the training details. Therefore, we apply an end-to-
end learning-based methods for this task. Note that the training can
be in different environments, to summarize the generic knowledge
from various environments, we apply meta-learning [15]. Meta-
learning, known as learning to learn, is methodically observing
how various ML algorithms perform on different learning tasks and
then learning from observations.

Figure 7 shows the meta network proposed by AutoPipe. There
are four components. 1) Static metrics: these metrics are constant
during the training, i.e., the first five metrics in Table 1. 2) Dynamic
changing metrics: AutoPipe monitors these metrics, i.e., the last
three metrics in Table 1, every iteration. 3) Worker partition so-
lution: it is described in the form of an array with size 𝑁 , each
element in the array represents the assigned layers of each worker.
4) The meta network: we use a long short-term memory (LSTM)

448

AutoPipe: Automatic Configuration of Pipeline Parallelism in Shared GPU Cluster ICPP ’24, August 12–15, 2024, Gotland, Sweden

Available BW of

each worker

FP/BP computation

time of each layer

in each worker

Total number of

layers/workers

The size of

input/output weight

in each layer

LSTM

Partition

solution

Fully-connected

layer

Predicted

training

speed

Dynamic metrics Embeddings

Static metrics

Figure 7: The meta-network of AutoPipe predicts the actual
training speed according to the worker partition solution.

block to learn the dynamic environment, then together with the
static inputs and partition solution, we apply the fully connected
layers. Finally, we predict the training speed.
New worker partition. Now we can predict the training speed
of each partition solution. Therefore, we can find the optimal by
enumerating possible solutions without the real deployment and
measurement. However, the enumeration is time consuming. In this
case, we limit the new partition solution to only change the two
workers’ tasks in comparison to the old one (we use PipeDream’s
solution to do the initialization). There are two benefits: 1) The enu-
meration space is reduced, and the time complexity is only 𝑂 (𝐿2);
2) The change involving just two workers can be done without
interrupting the pipeline. In addition, we can gradually migrate to
the optimal by adjusting multiple times.

4.3 RL-based Automatic Configuration
We presented a new worker partition method. However, due to the
switching overhead, we do not need to conduct a state switch for
each iteration. Here, we use RL [24] to automatically determine
whether to transmit to the new partition solution.
The arbiter model architecture. A typical RL model consists of
three parts. The input and output of the model, internal structure
of the model and a reward function to score the decision, i.e., the
output. The input of our RL model consists of three parts, the
environment metrics described in Table 1, the current partition
solution and the new partition. The output is simply a boolean value
that determines whether or not to switch. We use a fully connected
neural network as the structure of our RL model. Our practical test
shows that two hidden layers with 32 and 16 neurons are enough
for the good performance. The reward function is the training
speed of one iteration. We consider the normalized switching cost
in this case. To calculate the switching cost, we apply a similar
meta-network as the speed prediction model.
Offline training and online adapting. One major concern is
that DNN is a data-driven solution that cannot address the prob-
lem of out-of-distribution. It is not practicable to obtain a perfect
distributed training dataset because the distributed deep-learning
system environment may change in both hardware (GPU and net-
work) and software (model and DL architecture) parameters. One

option is to conduct online training. On the target distributed deep
learning task, we can train and update the meta-network and RL
model online. However, this creates system overhead because we
must repeatedly try exhaustive parameter sets to match a variety
of system situations. This strategy goes against our original goal
of increasing training speed. To address the problem, we apply an
offline training, online adaptation techniques. The central idea is
to employ transfer learning to swiftly adjust the meta-network and
RL model to the current environment while minimizing system
overhead. The following are three advantages of this strategy. 1) It
does not result in a significant increase in system overhead; 2) The
meta network optimizer can swiftly adapt to the present situation
thanks to transfer learning; 3) This approach has a greater speed
prediction accuracy than the offline trained variant.

4.4 Fine-Grained State Switching
To improve pipeline utilization, AutoPipe does not stop the pipeline
when switching to a new partition solution. To achieve this, we
refer to the pipelined context switching in PipeSwitch [16].
Layer-by-layer computation. PipeSwitch observes that DNN
models have the layered structure. To pack multiple training jobs
to the same GPU, PipeSwitch borrows the idea of fine-grained CPU
time-sharing. Pipelining on per-layer granularity is the most basic
method, in which the system sends the layers to the GPU memory
one by one, with the calculation for each layer halted before it is
sent. Layer-by-layer pipelining introduces additional sources of
system overhead, such as the cost of making numerous PCIe calls
to send the data. The transmission overhead is dominated by the
data size for a big amount of data, for example, aggregating the
entire model to a large tensor to broadcast together.
State switching in AutoPipe. Note that when switching the par-
tition solution, AutoPipe will only affect the tasks of two workers.
We perform the layer-by-layer computation for the two workers.
However, the pipeline will still be blocked due to the stagnation
of the corresponding layers of the two workers. To address the
issue, we note that PipeDream applies a technique called weight
stashing, which keeps numerous weight copies, one for each active
mini-batch. By migrating the weight copy of later active mini-batch
first, AutoPipe avoids the pipeline stall caused by the two workers.

5 EVALUATION
We conduct testbed experiments to evaluate AutoPipe1. The follow-
ing are some of the highlights:

• In the testbed experiments, we evaluate AutoPipe across different
DNN models, ML frameworks and synchronization paradigms
(§5.2). Compared to the state-of-the-art work PipeDream [4], Au-
toPipe achieves up to 89% training speedup without decreasing
the accuracy.

• In the deep dive, we measure each module of AutoPipe sepa-
rately and evaluate AutoPipe under different dynamic environ-
ment including changing bandwidth and the available GPUs. We
also preliminarily implement the AutoPipe-enhanced DAPPLE,
Chimera, PipeDream-2BW and show the improvement.

1For convenience, AutoPipe represents the AutoPipe-enhanced PipeDream.

449

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jinbin Hu, Ying Liu, Hao Wang, and Jin Wang

AutoPipe
PipeDream
Baseline

Sp
ee

d
(im

g/
se

c)

0

20

40

60

80

100

Bandwith
10Gbps 25Gbps 40Gbps 100Gbps

(a) ResNet50, PS, Tensorflow

AutoPipe
PipeDream
Baseline

Sp
ee

d
(im

g/
se

c)

0

10

20

30

40

Bandwith
10Gbps 25Gbps 40Gbps 100Gbps

(b) VGG16, PS, Tensorflow

AutoPipe
PipeDream
Baseline

Sp
ee

d
(im

g/
se

c)

0

20

40

60

Bandwith
10Gbps 25Gbps 40Gbps 100Gbps

(c) AlexNet, PS, Tensorflow

AutoPipe
PipeDream
Baseline

Sp
ee

d
(im

g/
se

c)

0

20

40

60

80

100

Bandwith
10Gbps 25Gbps 40Gbps 100Gbps

(d) ResNet50, PS, MXNet

AutoPipe
PipeDream
Baseline

Sp
ee

d
(im

g/
se

c)

0

10

20

30

40

Bandwith
10Gbps 25Gbps 40Gbps 100Gbps

(e) VGG16, PS, MXNet

AutoPipe
PipeDream
Baseline

Sp
ee

d
(im

g/
se

c)

0

20

40

60

Bandwith
10Gbps 25Gbps 40Gbps 100Gbps

(f) AlexNet, PS, MXNet

AutoPipe
PipeDream
Baseline

Sp
ee

d
(im

g/
se

c)

0

20

40

60

80

100

Bandwith
10Gbps 25Gbps 40Gbps 100Gbps

(g) ResNet50, Ring, PyTorch

AutoPipe
PipeDream
Baseline

Sp
ee

d
(im

g/
se

c)

0

10

20

30

40

Bandwith
10Gbps 25Gbps 40Gbps 100Gbps

(h) VGG16, Ring, PyTorch

AutoPipe
PipeDream
Baseline

Sp
ee

d
(im

g/
se

c)

0

20

40

60

80

Bandwith
10Gbps 25Gbps 40Gbps 100Gbps

(i) AlexNet, Ring, PyTorch

Figure 8: Training three widely-used DNN models, i.e., ResNet50, VGG16 and AlexNet under different communication patterns,
i.e., Parameter Server and Ring All-reduce, with different machine learning frameworks, i.e., Tensorflow, MXNet and PyTorch.
We set different link bandwidth from 10Gbps to 100Gbps.
• Experiments show that while improving the training speed, Au-
toPipe also guarantees the same convergence accuracy and does
not introduce much additional CPU overhead (less than 1%).

5.1 Testbed Setup
Testbed topology. Our testbed has 5 physical GPU servers, each
with 2 NVIDIA P100 GPUs, 40 CPU cores, 128GB memory, 1 Mel-
lanox ConnectX5 100Gbps dual ports NIC, and 1 Mellanox SN2100
switch, which builds a single switch topology. Our operating sys-
tem is Ubuntu 18.04 with Linux kernel version 4.15.0-55-generic.
The Mellanox driver version is 5.1-0.6.6.0.
Models and baselines. In our experiments, we employ three mod-
els and one dataset. Our models have three image classification
tasks: VGG16 [18], ResNet50 [19] and AlexNet [20] training on the
synthetic data as the format of ImageNet [21]. We use two com-
mon parameter synchronization schemes: PS and Ring All-reduce
for the data parallelism part. For the mini-batch size, we set 64
for VGG-16, 128 for ResNet-50 and 256 for AlexNet. We mainly
compare AutoPipe with the baseline (vanilla ML frameworks) and
PipeDream [4]. For the training speed metric, we calculate how
many images are processed per second. For the convergence accu-
racy metric, we use the same metric in PipeDream [4], i.e., Top-1
accuracy. For the training speed metric, we chose the number of
images processed per second.

5.2 Static Resource Allocation
Note that to emulate the scenarios of shared GPU cluster, we run
three identical jobs in every experiment. Figure 8 compares the
training speed of the baseline and PipeDream with AutoPipe on
three models with network bandwidth ranging from 10Gbps to
100Gbps (10Gbps, 25Gbps, 40Gbps, 100Gbps) and two different
communication schemes (PS and Ring All-reduce) implemented
by TensorFlow [22], MXNet [23], and PyTorch [8], respectively.
Figure 8 (a)-(c) show the results under PS and Tensorflow. We
observe that AutoPipe can outperform baseline / PipeDream by up
to 177% / 89% for ResNet50, 113% / 44% for VGG16, 143% / 70% for
AlexNet. Figure 8 (d)-(f) show the results under PS and MXNet. We
observe that AutoPipe can outperform baseline / PipeDream by up
to 171% / 82% for ResNet50, 104% / 41% for VGG16, 124% / 58% for
AlexNet. Figure 8 (g)-(i) show the results under Ring All-reduce
and PyTorch. We observe that AutoPipe can outperform baseline
/ PipeDream by up to 148% / 65% for ResNet50, 117% / 17% for
VGG16, 143% / 26% for AlexNet. The observations are the following:
1) AutoPipe outperforms PipeDream in all cases, and AutoPipe
even obtains more speedup based on PipeDream in several cases.
2) The speedup of PS is greater than Ring All-reduce. The reason
is that the worker partition model of PipeDream assumes the data
parallelism part is Ring All-reduce. Therefore, it will be inaccurate
under PS. 3) AutoPipe shows more speedup in ResNet50. The reason

450

AutoPipe: Automatic Configuration of Pipeline Parallelism in Shared GPU Cluster ICPP ’24, August 12–15, 2024, Gotland, Sweden

AutoPipe
PipeDream

Sp
ee

d
(im

g/
se

c)

20

40

60

80

100

of iteration
10 20 30 40 50 60 70 80

Figure 9: Training DNN under dynamic bandwidth.

AutoPipe
PipeDream

Sp
ee

d
(im

g/
se

c)

50

100

150

200

of iteration
10 20 30 40 50 60

Figure 10: Training DNN under dynamic GPUs.

is that ResNet50 contains more layers than the other two models.
Therefore, AutoPipe obtains more benefit from the more accurate
modeling and fine granularity switching.

5.3 Dynamic Resource Allocation
Speedup under dynamic environment: The above experiments
are under a fixed configuration with three identical jobs. With a
dynamic environment, we found that AutoPipe may further speed
up the training.We choose to train ResNet50 with Ring and PyTorch.

To evaluate AutoPipe under dynamic bandwidth first. We set the
initial bandwidth to 10Gbps, we change the bandwidth to 25Gbps
at the 20th iteration, 40Gbps at the 40th iteration, 100Gbps at the
60th iteration. We compare AutoPipe with PipeDream, which has a
fixed worker partition setting at the beginning. Figure 9 shows that
AutoPipe outperforms the PipeDream all the time, and the speedup
increases with the bandwidth growing. The result is in line with
our expectation.

In the second experiment, we simulate the change of compu-
tation resources (GPU) by adding new local training jobs. At the
beginning, there are no additional jobs. We add one more train-
ing job at the 20th and 40th iterations. From Figure 10, we can see
that AutoPipe still keeps the leading all the time, and shows more
performance gain with more additional jobs. Meanwhile, we ob-
serve that the factor of computation resources has more impact on
the training speed, and AutoPipe obtains more speedup with the
dynamic computation resource.
Impact on the model convergence: To prevent GPUs from being
idle, AutoPipe applies asynchronous pipeline parallelism. Within a
minibatch, after finishing the forward pass, each stage transfers the
output to the next stage asynchronously. Here, we measure the im-
pact of such synchronization on the training convergence accuracy.
We compare the top-1 accuracy of AutoPipe with PipeDream, BSP
(Bulk Synchronous Parallelism) and TAP (Total Asynchronous Par-
allelism) on twowidely-usedDNNmodels, ResNet50 and VGG16. As
shown in Figure 11, AutoPipe can achieve the same top-1 accuracy

AutoPipe PipeDream BSP TAP

To
p-

1
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

100

Time (in hours)
0 10 20 30

(a) ResNet50

AutoPipe PipeDream BSP TAP

To
p-

1
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

100

Time (in hours)
0 10 20 30 40 50 60 70 80

(b) VGG16

Figure 11: Accuracy vs. time for ResNet50 and VGG16

Meta-Network
PipeDream
RL Model

C
om

pu
ta

tio
n

tim
e

(s
ec

)

0.1

1

10

AlexNet ResNet50 VGG16

Figure 12: Computation time of worker partition modeling.

Vanilla
AutoPipe-enhanced

Sp
ee

d
(s

eq
ue

nc
e/

se
c)

0

5

10

15

20

Chimera DAPPLE PipeDream-2BW

Figure 13: Improvement of AutoPipe-enhanced solutions.

as PipeDream and BSP under convergence, and 1.42 × /1.35× com-
pare to TAP on ResNet50 / VGG16. Meanwhile, AutoPipe achieves
the fastest convergence speed, which is 1.53×, 3.13× and 1.95×
on ResNet50, and 1.35×, 3.25× and 2.31× on VGG16 compared to
PipeDream, BSP and TAP, respectively.
Model computation overhead: To make AutoPipe ready deploy-
able, we need to ensure the computation time of the meta-network
and RL model is short enough. Here we measure both the meta-
network and RL model computation time, and compare them with
the DP algorithm used in PipeDream. We first find that their CPU
utilization is quite low, less than 1%. Figure 12 shows the computa-
tion time under three different models. We find that the time cost
of our meta-network and RL model is further less than the DP of
PipeDream. The total time cost of the worker partition calculation
of AutoPipe is less than one second in all cases.

451

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jinbin Hu, Ying Liu, Hao Wang, and Jin Wang

Improvement on other pipeline parallelisms: Although our
design is heavily based on PipeDream, the idea of AutoPipe is
naturally applicable to improve other pipeline parallelism vari-
ants. Here, we implement and compare the AutoPipe-enhanced
version of three recent works, i.e., DAPPLE [30], Chimera [31] and
PipeDream-2BW [32]. Since these solutions focus on large-scale
DNNs, we train Bert-48 on Wikipedia dataset, the mini-batch size
is 256, other settings are the same as the testbed experiment. As
shown in Figure 13, all the AutoPipe-enhanced versions outperform
the vanillas.

6 RELATEDWORK
Automated DNN parallelization: To explore efficient paralleliza-
tion strategies, many automated frameworks have been proposed in
the past few years. ColocRL [24] leverages reinforcement learning
to automatically learn efficient device assignments for DNN model
parallelizing across multiple GPUs, but it only performs parallelism
in the device dimension. FlexFlow [3] uses the deep learning engine
to automatically find efficient parallelization strategies in the search
space. However, the above frameworks optimize distributed DNN
training assuming a fixed computation graph. TASO [25] is the
first work to focus on optimizing DNN computation graph, which
automatically generates graph substitutions.
Communication optimization of DNN training: There are
lots of approaches to optimize communication for DNN training.
These include, but are not limited to: 1) overlapping communication
with computation through various synchronous parallel strategies
to alleviate communication bottleneck among workers [9, 26, 27];
2) adjusting the mini-batch size to reduce communication rounds
and speedup convergence for DNN training [21]; 3) using the pro-
grammable switch data plane to aggregate the model parameters
from multiple rack switches to share the switch resources across
simultaneously running jobs [28]; 4) using gradient compression
technique to reduce the traffic volume in each iteration and make
a good tradeoff between the communication bandwidth and the
convergence time [29].

7 CONCLUSION
This paper presents AutoPipe, a highly efficient and self-adapted
pipeline parallelism for a shared GPU cluster. AutoPipe contains
three key innovations, it leverages meta-learning to predict the
training speed of certain worker partition solution. With the pre-
dicted training speed, AutoPipe chooses the optimal partition solu-
tion and applies reinforcement learning to determine whether to
perform the switching. Our evaluation results show that AutoPipe
achieves the best performance under different models, communica-
tion schemes and frameworks with little system overhead. AutoPipe
can optimize the system configuration when resource availability
changes, reducing training time by up to 143% in dynamic network
environment.

ACKNOWLEDGMENTS
This work was sponsored in part by National Natural Science
Foundation of China under Grant (No.62072056, No.62102046), and
the Natural Science Foundation of Hunan Province under Grant
(No.2024JJ3017, No.2022JJ30618).

REFERENCES
[1] H. Wang, H. Tian, J. Chen, X. Wan, J. Xia, G. Zeng, W. Bai, J. Jiang, Y. Wang, and K.

Chen. Towards Domain-specific Network Transport for Distributed DNN Training.
In Proc. USENIX NSDI, 2024.

[2] M. Li, D. G. Andersen, J. W. Park, et al. Scaling Distributed Machine Learning with
the Parameter Server. In Proc. USENIX OSDI, 2014.

[3] Z. Jia, M. Zaharia, and A. Aiken. Beyond Data and Model Parallelism for Deep
Neural Networks. In Proc. MLSys, 2019.

[4] D. Narayanan, A. Harlap, A. Phanishayee, et al. PipeDream: Generalized Pipeline
Parallelism for DNN Training. In Proc. ACM SOSP, 2019.

[5] Y. Huang, Y. Cheng, A. Bapna, et al. Gpipe: Efficient Training of Giant Neural
Networks Using Pipeline Parallelism. In Proc. NIPS, 2019.

[6] W. Xiao, R. Bhardwaj, R. Ramjee, et al. Gandiva: Introspective Cluster Scheduling
for Deep Learning. In Proc. USENIX OSDI, 2018.

[7] M. Jeon, S. Venkataraman, A. Phanishayee, et al. Analysis of Large-Scale Multi-
Tenant GPU Clusters for DNN Training Workloads. In Proc. USENIX ATC, 2019.

[8] A. Paszke, S. Gross, S. Chintala, et al. Automatic Differentiation in Pytorch. In
Proc. NIPS, 2017.

[9] K. Hsieh, A. Harlap, N. Vijaykumar, et al. Gaia: Geo-Distributed Machine Learning
Approaching LAN Speeds. In Proc. USENIX NSDI, 2017.

[10] W. Bai, L. Chen, K. Chen, et al. Information-Agnostic Flow Scheduling for Com-
modity Data Centers. In Proc. USENIX NSDI, 2015.

[11] J. Hu, C. Zeng, Z. Wang, J. Zhang, K. Guo, H. Xu, J. Huang, K. Chen. Load
Balancing with Multi-level Signals for Lossless Datacenter Networks. IEEE/ACM
Transactions on Networking, 2024.

[12] L. Chen, J. Lingys, K. Chen, et al. Auto: Scaling Deep Reinforcement Learning for
Datacenter-Scale Automatic Traffic Optimization. In Proc. ACM SIGCOMM, 2018.

[13] Y. Peng, Y. Zhu, Y. Chen, et al. A Generic Communication Scheduler for Dis-
tributed DNN Training Acceleration. In Proc. ACM SOSP, 2019.

[14] Y. Ma, H. Wang, Y. Zhang, et al. AutoByte: Automatic Configuration for Optimal
Communication Scheduling in DNN Training. In Proc. IEEE INFOCOM, 2022.

[15] J. Vanschoren. Meta-learning: A survey. arXiv preprint:1810.03548, 2018.
[16] Z. Bai, Z. Zhang, Y. Zhu and X. Ji. PipeSwitch: Fast Pipelined Context Switching

for Deep Learning Applications. In Proc. USENIX OSDI, 2020.
[17] J. Hu, Y. He, W. Luo, J. Huang , J. Wang. Enhancing Load Balancing with In-

network Recirculation to Prevent Packet Reordering in Lossless Data Centers.
IEEE/ACM Transactions on Networking, 2024.

[18] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-
scale Image Recognition. arXiv preprint:1409.1556, 2014.

[19] K. He, X. Zhang, S. Ren, et al. Deep Residual Learning for Image Recognition. In
Proc. IEEE CVPR, 2016.

[20] K. Alex, I. Sutskever and G. E. Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. In Proc. NIPS, 2012.

[21] P. Goyal, P. Dollár, R. Girshick, et al. Accurate, Large Minibatch SGD: Training
Imagenet in 1 Hour. arXiv preprint:1706.02677, 2017.

[22] M. Abadi, P. Barham, J. Chen, et al. Tensorflow: A System for Large-Scale Machine
Learning. In Proc. USENIX OSDI, 2016.

[23] T. Chen, M. Li, Y. Li, et al. Mxnet: A Flexible and Efficient Machine Learning
Library for Heterogeneous Distributed Systems. arXiv preprint:1512.01274, 2015.

[24] A. Mirhoseini, H. Pham, Q. V. Le, et al. Device Placement Optimization with
Reinforcement Learning. In Proc. ICML, 2017, pp. 2430-2439.

[25] Z. Jia, O. Padon, J. Thomas, et al. TASO: Optimizing Deep Learning Computation
with Automatic Generation of Graph Substitutions. In Proc. ACM SOSP, 2019.

[26] C. Chen, W. Wang and B. Li. Round-robin Synchronization: Mitigating Commu-
nication Bottlenecks in Parameter Servers. In Proc. IEEE INFOCOM, 2019.

[27] J. Xu, S. Huang, L. Song and T. Lan. Live Gradient Compensation for Evading
Stragglers in Distributed Learning. In Proc. IEEE INFOCOM, 2021.

[28] C. Lao, Y. Le, K. Mahajan, et al. ATP: In-network Aggregation for Multi-tenant
Learning. In Proc. USENIX NSDI, 2021.

[29] D. Alistarh, D. Grubic, J. Li, et al. QSGD: Communication-efficient SGD via
Gradient Quantization and Encoding. In Proc. NIPS, 2017.

[30] S. Fan, Y. Rong, C. Meng, et al. DAPPLE: A pipelined data parallel approach for
training large models. In Proc. ACM SIGPLAN, 2021.

[31] S. Li and T. Hoefler. Chimera: Efficiently Training Large-Scale Neural Networks
with Bidirectional Pipelines. In Proc. ACM SCw, 2021.

[32] D. Narayanan, A. Phanishayee, K. Shi, et al. Memory-Efficient Pipeline-Parallel
DNN Training. In Proc. PMLR, 2021.

[33] J. Hu, J. Huang, J. Wang, J. Wang.A Transmission Control Mechanism for Lossless
Datacenter Network Based on Direct Congestion Notification. ACTA ELECTON-
ICA SINICA, 51(9): 2355-2365, 2023.

[34] Narayanan, Deepak, et al. Efficient large-scale language model training on gpu
clusters using megatron-lm. Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021.

[35] Kosson, Atli, et al. Pipelined backpropagation at scale: training large models
without batches. Proceedings of Machine Learning and Systems, 3: 479-501, 2021.

[36] Yang, Bowen, et al. Pipemare: Asynchronous pipeline parallel dnn training. Pro-
ceedings of Machine Learning and Systems, 3: 269-296, 2021.

452

	Abstract
	1 Introduction
	2 Background
	2.1 Pipeline Parallelism
	2.2 Automatic Configuration

	3 Motivation
	3.1 Pipeline Utilization in Pipeline Parallelism
	3.2 Resource sharing in GPU cluster

	4 AutoPipe Design
	4.1 Overview
	4.2 Integrated Pipeline Model
	4.3 RL-based Automatic Configuration
	4.4 Fine-Grained State Switching

	5 Evaluation
	5.1 Testbed Setup
	5.2 Static Resource Allocation
	5.3 Dynamic Resource Allocation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

