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Abstract— Modern data-center applications generate a diverse
mix of short and long flows with different performance
requirements and weaknesses. The short flows are typically delay-
sensitive but to suffer the head-of-line blocking and out-of-order
problems. Recent solutions prioritize the short flows to meet their
latency requirements, while damaging the throughput-sensitive
long flows. To solve these problems, we design a Coding-based
Adaptive Packet Spraying (CAPS) that effectively mitigates the
negative impact of short and long flows on each other. To exploit
the availability of multiple paths and avoid the head-of-line
blocking, CAPS spreads the packets of short flows to all paths,
while the long flows are limited to a few paths with Equal
Cost Multi Path (ECMP). Meanwhile, to resolve the out-of-
order problem with low overhead, CAPS encodes the short flows
using forward error correction (FEC) technology and adjusts
the coding redundancy according to the blocking probability.
Moreover, since the coding efficiency decreases when the coding
unit is too small or large, we demonstrate how to obtain the
optimal size of coding unit. The coding layer is deployed between
the TCP and IP layers, without any modifications on the existing
TCP/IP protocols. The test results of NS2 simulation and small-
scale testbed experiments show that CAPS significantly reduces
the average flow completion time of short flows by ∼30%-70%
over the state-of-the-art multipath transmission schemes and
achieves the high throughput for long flows with negligible traffic
overhead.

Index Terms— Data center, TCP, packet spray, multipath.

I. INTRODUCTION

IN MODERN data centers, a variety of cloud-based appli-
cations such as web search and social networking are

deployed by a large number of online service providers like
Google and Facebook. To obtain better user experience and
financial revenue, how to achieve the low latency and high
throughput becomes a crucially important issue.
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Random Packet Spraying (RPS) [1] splits each flow into
packets and spreads the packets to all available paths to
achieve high efficiency and easy deployment in the multipath
topologies such as FatTree and Clos, which are widely used in
the large-scale data center networks (DCNs). In recent years,
the packet spraying technique has already been implemented
on the commodity switches (e.g. Cisco [2]).

However, RPS neglects the important traffic characteristic
that the short and long Transmission Control Protocol (TCP)
flows are mixed in DCNs. The data center traffic can be
characterized by heavy-tailed distribution [3], [4], that is,
around 90% of data is provided by only around 10% of TCP
flows, and about 90% of TCP flows provide only about 10%
of data. Furthermore, most short flows belong to the delay-
sensitive applications, while the majority of long flows are
throughput-sensitive. Since RPS does not distinguish between
short and long flows, it inevitably leads to the negative
interaction between the two kinds of flows.

The following two issues emerge when the packets of short
and long flows are mixed over the multiple paths by RPS
scheme. The first one is the head-of-line blocking. When
the switch buffer is occupied by the packets of long flows,
the short flows have to experience large queueing delay,
leading to the long-tailed flow completion time (FCT). Sec-
ondly, RPS randomly spreads the packets into different paths,
possibly resulting in the TCP out-of-order problem.

Coding is a very powerful scheme to address these issues.
At the sender, the source packets are encoded and scattered to
multiple paths. Though some packets experience the head-of-
line blocking or out-of-order, once sufficient encoded packets
arrive at the receiver, the original packets can be recovered
immediately. In this paper, we propose a coding-based adaptive
packet spraying (CAPS), which successfully integrates coding
into packet spraying and efficiently avoids head-of-line block-
ing and packet reordering. To improve the coding efficiency,
we provide quantitative analysis of the number of redundant
packets and the size of coding unit. Moreover, the transparent
coding layer only needs to be deployed between the TCP and
Internet Protocol (IP) layers at the end hosts, while making
no modifications on the existing TCP/IP protocols.

In summary, our major contributions are as follows:

• We conduct an extensive simulation-based study to ana-
lyze two key issues with multipath transmission: the
short flows experience large FCT due to the head-of-line
blocking caused by the long flows, and the coexisting of
short and long flows leads to the reordering problem.
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• We propose a multipath transport scheme CAPS, which
randomly scatters the encoded packets of short flows to
all paths and transmits the long flows to a few paths.
Specifically, we design the coding layer, which ratio-
nally adjusts the number of redundant packets to resolve
the out-of-order and head-of-line blocking problems.
To improve the link utilization, CAPS swiftly scatters the
packets of long flows to the unused paths by short flows.

• To achieve high coding efficiency, we firstly demonstrate
experimentally and theoretically why the FCT perfor-
mance is impacted by the size of coding unit. Then
we give the mathematical analysis on how to obtain the
optimal size of coding unit and verify the accuracy of our
analysis results.

• By using both Network Simulator 2 (NS2) simulations
and small-scale testbed experiments, we demonstrate that
CAPS performs remarkably better than the state-of-the-
art multipath transmission schemes. Especially, CAPS
greatly reduces the average FCT (AFCT) of short flows
by ∼30%-70% under high workload. Meanwhile, CAPS
improves throughput of long flows by up to ∼45% and
∼35% over RepFlow [5] and Freeway [6], respectively.

The rest of the paper is organized as following. In Section II,
we present the related works. In Section III and IV,
we respectively describe our design motivation and overview.
In Section V and VI, we introduce packet spraying and
coding of CAPS, respectively. We discuss the implementa-
tion in Section VII. In Section VIII and IX, we show the
testbed experimental and NS2 simulation results, respectively.
We conclude the paper in Section X. The appendixes provide
supplementary experiments related to Incast scenarios and
priority queues.

II. RELATED WORKS

Recent data center architecture uses a large number of
commodity switches organized as multi-rooted tree with mul-
tiple equal cost paths from the sender to the receiver. Many
existing solutions have been proposed to leverage multiple
paths to reduce FCT and improve throughput. As a typical
representative of the flow-level transmission scheme, ECMP
is extensively used in current fabrics due to its simplicity.
However, when there are a few long flows, the hash collision
becomes the main cause for TCP performance degradation.
That is, multiple long flows are easily transferred through the
same path, resulting in queueing delay or packet loss.

There have been lots of efforts to address the shortcoming
of ECMP. RPS randomly spreads all packets along different
paths, achieving better load balancing and network utiliza-
tion. However, RPS easily brings about the TCP out-of-order
problem, potentially triggering the suboptimal performance.
CONGA [7] uses the global congestion information to decide
how to route flowlets. However, as CONGA only reroutes
when flowlets emerge, it cannot always timely react to conges-
tion, resulting in long-tailed FCT. Presto [8] randomly routes
every flowcell with fixed size (i.e., 64KB) among parallel
paths. Since Presto is unaware of path conditions, it may
suffer from reordering between flowcells in asymmetric envi-
ronments. The above schemes are flow-size agnostic solutions
and are not able to help both short and long flows to obtain
high performances at the same time.

Some other schemes are proposed to schedule the short
and long flows in different ways to address the problem

of performance degradation. The centralized flow scheduling
architecture Hedera [9] uses the global first fit algorithm to
schedule elephant flows to non-congested paths. Although
Hedera avoids the collision between long flows, it still leads
to the traffic imbalance between long and short flows without
flexibly splitting traffic. Freeway [6] adaptively partitions the
parallel paths into low latency paths and high throughput
paths and isolates the short and long flows on these two
different transmission paths to reduce the impact of two types
of flows on each other. Freeway not only guarantees the low
latency for real-time traffic but also meets the demand of
throughput hungry flows. Based on the RPS and MPTCP [10],
MMPTCP [11] randomly scatters packets at the initial time
to reduce the FCT of short flows. After a specific amount
of data is sent, MMPTCP switches to a regular MultiPath
TCP (MPTCP) mode to improve the throughputs of long
flows. Karuna [4] schedules a mix of flows with and without
deadlines to balance the interests of different kinds of flow.
However, these flow-based scheduling schemes are not able
to make full use of all available multiple paths to achieve
high throughput. As a packet level edge-based transmission
scheme, Hermes [12] uses comprehensive sensing to detect
the network uncertainties. It considers rerouting only when it
will be profitable rather than vigorous path changing. Even
the timely yet cautious rerouting in Hermes can mitigate the
congestion mismatch problem, it is still hard to avoid the
reordering problem.

Based on the multipath diversity, many other multiple paths
transmission schemes are proposed to improve the perfor-
mance of short flows. RepFlow [5] simply replicates each
short flow to exploit multiple paths diversity. Then the receiver
uses the first flow that finishes its transfer to minimize flow
completion times. Although it is simple and effective in
reducing the FCT of short flows, the collisions between both
kinds of flows still exist in heavy load scenarios. FMTCP [13]
employs fountain code to encode transmission data to alleviate
the impact of path heterogeneity in MPTCP. FMTCP recovers
original data through the subflows from the good paths to avoid
retransmission. L2DCT [14] achieves the LAS scheduling
discipline at the sender in a distributed way. According to
the flow size that has been sent, L2DCT distinguishes the short
and long flows and assigns higher bandwidth to the short ones,
thereby effectively reducing the average flow completion time.
However, the improvements on the short flows come at a cost
of throughput degradation of the long ones.

Compared with the above works, our solution CAPS works
through a different perspective: we isolate the two kinds
of short and long flows on the packet-level to avoid the
head-of-line blocking problem and introduce the FEC coding
technology to solve the TCP out-of-order issue for short flows.
Meanwhile, CAPS flexibly switches the packets of long flows
to idle paths to obtain high throughput.

III. MOTIVATION

To motivate our design, we investigate the impact of the
long flows on the short ones with existing RPS scheme.

A. Head-of-Line Blocking

In data center, almost 90% of TCP flows are less than
100KB [3]. Based on this characteristic, a flow with its size
less than 100KB is considered as a short flow, otherwise, that
is a long flow. Since RPS does not isolate short flows from
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Fig. 1. Topology and queueing delay.

long ones, the packets of short flows may be spread to the
paths occupied by long flows, and have to be queued behind
the long flows. Therefore, the short flows may suffer from
heavy head-of-line blocking and long-tailed FCT [15], [16].

We conduct NS2 simulation test to analyze the head-of-
line blocking problem with the leaf-spine topology as shown
in Fig. 1 (a). Each sender sends a flow to a single receiver
via multiple switches. The buffer size of each switch is
256 packets. There are 40 equal cost paths between the source
and destination nodes. The bandwidth of each path is 1Gbps
and the round-trip propagation delay is 100μs. In addition,
according to the measurement results in [17], the 75th and
95th percentile of number of concurrent large flows sharing a
Top of Rack (ToR) switch are 2 and 4, respectively. In this
test, the mixture of 100 short TCP flows (less than 100KB) and
4 long-lived background TCP flows are generated in heavy-tail
distribution.

We compare the average queueing delay of short flows
under two cases. Firstly, the ToR switch uses RPS to spread
all packets of short and long flows to all paths. Secondly,
without long flows, only the packets of short flows are spread
to all paths. Fig. 1 (b) demonstrates the average queueing
delay for the short flows. In the case without the long flows,
the short flows do not experience the head-of-line blocking,
and thus the average queueing delay of the short flows is
reduced significantly by up to around 80%.

B. Out-of-Order

Since RPS randomly spreads the packets to all paths,
the long flows potentially make the short flows suffer from the
out-of-order problem, which means the later-sent packets may
be received ahead of the earlier-sent ones. Fig. 2 (a) shows
the ratio of the number of disorder packets to all packets.
Compared with scenario without the long flows, the ratio of
disorder packets of short flows becomes larger when both
kinds of flows are mixed.

When the out-of-order event happens, the TCP sender
assumes the packets are lost and then cuts its congestion
window, resulting in spurious retransmission and even timeout.
In Fig. 2 (b), the average congestion windows of the short
flows are about 50% smaller than that in the scenario without
the long flows. As a result, the throughput degrades signifi-
cantly due to the constrained congestion window.

Without the long flows, both the queueing delay and the
number of disorder packets in short flows are significantly
reduced. Therefore, as shown in Fig. 2 (c), the FCT of short
flows is greatly reduced without the impact of long flows.

C. Summary

Our analysis of the coexisting short and long flows leads
us to conclude that (i) the short flows experience increasing

Fig. 2. Disorder of short flows due to long flows.

Fig. 3. CAPS architecture.

delay due to the head-of-line blocking once all flows are
treated as the same, (ii) the packet reordering due to the
long flows seriously enlarges the FCT of short flows. These
conclusions motivate us to tackle the above problems by
designing and implementing a coding-based adaptive packet
spraying scheme.

IV. DESIGN OVERVIEW

In this section, we present an overview of CAPS. The two
key points of CAPS are using packet spraying and FEC coding
to solve the head-of-line blocking and out-of-order problem,
respectively. Specifically, on the one hand, when the long
flows are limited to a few paths, most packets of the short
flows are spread on the paths without blocking and therefore
achieve the lower queueing delay. On the other hand, FEC
coding eliminates the impact of packets reordering. Even if
some encoded packets of the short flows are blocked by the
long flows, the original packets can be recovered from the
other non-blocked encoded packets. CAPS consists of three
modules, as shown in Fig. 3.

(1) Encoding Module: At the sender, the encoding module
accepts source packets from the transport layer and caches
them into an encoding buffer. Then the sender generates
k+r encoded packets from k original packets (i.e., a coding
unit) in the encoding buffer, and delivers the k+r encoded
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packets to the network layer. During the encoding procession,
the number of redundant packets r is dynamically adjusted
according to real-time state of network traffic. When receiving
the Acknowledgement (ACK) packets, the sender removes the
ACKed packets from the coding buffer and delivers the ACK
packets to the transport layer.

(2) Packet Spraying Module: At the switch, the packets
of the short flows are spread to all output ports using RPS
technique [11], which have already been implemented in many
commodity switches. On the other hand, the long flows are
transmitted by ECMP [18] or RPS respectively according to
the ON or OFF mode of short flows.

(3) Decoding Module: At the receiver, the encoded packets
from the network layer are cached into the decoding buffer.
The original k packets can be decoded from any k+r encoded
packets accurately and then handed over to the upper layer.

V. PACKET SPRAYING

To reduce the negative impact of short and long flows on
each other, CAPS uses different strategies to transmit the two
kinds of flows. When the short and long flows are transmitted
at the same time, the long flows are limited to only a few paths
by ECMP strategy, while the short flows are simply spread to
all paths by RPS to make full use of the multiple paths between
any given pair of hosts. The details of CAPS operation on ToR
switch are described as following.

(1) Long flows: For a long flow arriving at the ToR switch
with the short flows existing at the same time, it is forwarded
to the next hop by ECMP, which is extensively used as the
de facto routing algorithm. As identified by the TCP 5-tuple,
the TCP flows are randomly hashed to their respective paths.
Thus, the small number of long flows are limited to a few paths
and the head-of-line blocking problem due to the long flows
is avoided for the short flows on the other paths. Moreover,
since ECMP is a flow-level scheme, the out-of-order problem
of long flows is also resolved.

(2) Short flows: Once arriving at the ToR switch, the packet
of short flows is routed by RPS. Since the packets of short
flows are randomly scattered to all available paths to the desti-
nation on the packet-level, RPS utilizes all available bandwidth
more efficiently than ECMP in terms of the throughput and
flow completion time. However, RPS potentially results in the
significant packet reordering due to the large queueing delay
on the paths with long flows. To overcome the out-of-order
problem, we use FEC coding technology to encode the packets
of short flows at the sender as illustrated in the following
section.

VI. ENCODING AND DECODING

In this section, we firstly give our rational selection for
coding algorithm. Then the key point of redundancy and
coding unit optimization is discussed. Finally, we analyze the
delay improvement and traffic overhead.

A. Coding Algorithm

Forward Error Correction (FEC) technology [13], [19], [20]
effectively mitigates the negative impact of packets blocking
and reordering. The reason is that FEC only cares about how
many, rather than which encoded packets have been received.
FEC codes are mainly divided into two categories, called fixed-
rate codes [21] and rateless codes [22]. For rateless codes,

Fig. 4. Traffic mode and RTT distribution.

redundancy should be adjusted in real-time according to the
varying packet loss or blocking probability. In order to avoid
unnecessary redundant packets, the receiver sends the feedback
information to the sender to stop encoding for the current
coding unit [23], [24], unavoidably increasing the latency and
also reducing the robustness of data transmission.

In our CAPS, we use the fixed-rate codes due to the
following reasons. Firstly, the fixed-rate coding scheme works
well when the blocking rate does not change rapidly. Here,
we investigate the probability of a short flow being blocked by
long flows (i.e., blocking probability). We conduct a simulation
in NS2 with the same settings as described in Section III.
As shown in Fig. 4 (a), the traffic of short flows shows
ON/OFF mode, in which the packets of short flows start and
finish their transmissions during the ON periods. Both the ON
and OFF periods follow exponential distribution and the OFF
period is much longer than the bursty ON period [3]. During
the ON periods of the short flows, the long flows are always
existing because the long flows have much larger flow size.
This phenomenon means that, for short flows, the blocking
probability is fixed during their lifetime.

Secondly, the blocking probability can be estimated in
advance at the sender based on the measurement of RTT.
As shown in Fig. 4 (b), 4 paths with long flows have much
larger RTT than the other paths with only short flows. The
blocking probability by long flows can be estimated as 0.1,
which is the ratio of the number of paths with large RTT to
the total number of paths. However, since CAPS randomly
spreads packets of the short flows to all paths on the ToR
switch, the sender is unable to directly obtain the exact RTT
for each path. Here, we utilize the TCP congestion control
mechanism. Specifically, when the sender receives the ACK
packets, based on the corresponding RTT for each ACK,
the blocking probability is calculated as the ratio of the number
of ACK packets with large RTT to the total number of received
ACK packets. According to the RTT statistics, the empirical
threshold for the large RTT is set as 2x average RTT of all
packets.

The classical fixed-rate codes include Reed-solomon codes
(RS) and Low Density Parity Check Codes (LDPC). Since
RS is suitable for the short code unit with total number of
bits less than 1000, we choose LDPC because it is more
practical to combine multiple packets (i.e., 1500 Bytes for each
packets) into a code unit [21]. As shown in Fig. 5, a code unit
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Fig. 5. Data transmission for a coding unit.

containing k source packets (S1, S2, . . . , Sk) is encoded into
k + r encoded packets (C1, C2, . . . , Ck+r) at the sender. The
value of r can be changed at each encoding unit according
to the blocking probability. The receiver performs decoding
process to reconstruct the original packets from any set of k�
encoded packets, for k� slightly larger than k. Here, k is set
to the congestion window size of short flows. Since k� can be
approximated by k when the number of bits of a code unit is
large (i.e., > 1000 bits) [20], for simplicity, we substitute k for
k� in the following sections. At the receiver, the subsequent
received encoded packets belonging to the same coding unit
are dropped directly.

B. Redundancy Optimization

In the encoding operation, the coding redundancy affects
both the decoding delay and traffic overhead. It is hard to
balance these two aspects. For instance, in order to speed up
the decoding operation, the sender should send more redundant
packets, which unavoidably brings about unnecessary traffic
overhead and limits the transmission rate of the sender by
itself. However, if too less redundant packets are transferred,
the decoding speed is limited because the receiver has to
wait for enough encoded packets for decoding operation.
In brief, the coding redundancy should be elaborately adjusted
to achieve good tradeoff between the decoding delay and traffic
overhead. We give the redundancy optimization as following.

Let nL and n denote the number of ACK packets with
large RTT and the total number of received ACK packets,
respectively. Then we get the blocking probability pB of a
short flow blocked by long flows as pB = nL

n .
A code unit has k source packets and r redundant pack-

ets. That is, k source packets are encoded into k + r
encoded packets. To guarantee that at least k encoded packets
reach the receiver without blocking, the following equation
(1− pB)× (k + r) ≥ k should be satisfied.

To reduce the traffic overhead, the number of redundant
packets r for each k source packets is set as r = � k

1−pB
− k�.

Fig.6 (a) shows the number of redundant packets r with
increasing pB . For the higher blocking probability or larger
coding unit, the sender uses more redundant packets to com-
pensate the blocked packets and achieve the high successful
decoding probability.

Unfortunately, since the short flows are randomly spread
to all paths, the decoding probability of short flows is not
100%, because some unlucky packets may be blocked or even
dropped on the paths with long flows. Here, we analyze the
successful decoding probability pS of short flows.

Within k + r encoded packets, supposing the number of
blocked packets by long flows is j, we obtain the probability
of any blocked j encoded packets out of k + r packets as

pB(j) = Cj
k+r × pB

j × (1− pB)k+r−j . (1)

Fig. 6. Numeric comparison and NS2 simulation.

The receiver can successfully decode the original packets
only when the number of blocked packets is no larger than the
number of redundant packets r. Then the successful decoding
probability pS is computed as

pS =
r∑

j=0

pB(j) =
r∑

j=0

Cj
k+r × pB

j × (1− pB)k+r−j . (2)

The numeric comparison of the successful decoding proba-
bility pS is shown in Fig. 6 (b). The number of paths and
the coding unit size k are set as 40 and 10, respectively.
In the numeric analysis, we simply substitute the ratio of the
number of long flows’ paths to the total number of paths for the
blocking probability. With the increasing number of redundant
packets r, the successful decoding probability becomes larger
due to more unblocked packets. Furthermore, it is much
easier to decode successfully with a smaller number of long
flows. For 2 long flows, the successfully decoding probability
reaches almost 1 when r is 2. We also conduct the simulation
experiments in NS2 with the same settings in Section VI-A.
Fig.6 (c) shows the test result, which is consistent with the
trend of numeric analysis.

C. Coding Unit Optimization

In our preliminary work [25], the size of coding unit k is
simply set to the congestion window w. When the congestion
window is small, the probability of hitting the blocked paths
for small coding unit is very low. However, with the growth
of the TCP flow size in many datacenter applications, the con-
gestion window is likely to increase too large [26]. If k is still
set to large w, the large coding unit easily experiences large
tailed delay. In this section, we optimize the size of coding
unit to achieve high coding efficiency.

We use an example to show the impact of coding unit size
k. As illustrated in Fig. 7, there are 2 blocked paths in 4 equal
cost paths. The sender generates 6 redundant packets for the
6 source packets.

Fig. 7 (a) shows the case of 2 coding units with k of 3. Since
6 packets are blocked, the source packets can not be recovered
at the receiver and have to wait for the blocked packets.
This result shows that, when the packets of a coding unit are
scattered on multiple paths, the packets of large coding unit
are easily blocked, resulting in long-tailed delay. As shown
in Fig. 7 (a), there are 3 redundant packets for a coding unit
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Fig. 7. Coding efficiency with varying k.

Fig. 8. Theoretical and simulation results.

of 3 source packets. The probability that more than 3 packets
are blocked is

∑6
j=4 Cj

6 × (1
2 )j × (1 − 1

2 )6−j = 0.34. Then,
the successful decoding probability of the first 3 received
packets is 1− 0.34 = 0.66.

Without loss of generality, we use Equation (2) in
Section VI-B to calculate the successful decoding probability
pS for first k packets in a coding unit. Fig. 8 (a) presents
the theoretical results of pS with increasing of k and pB .
In Fig. 8 (a), when the coding unit becomes larger, the success-
ful decoding probability pS decreases, because more packets
are easily blocked with increasing size of coding unit.

However, if the size of coding unit is too small, the decoding
capability is impaired. From the macroscopic point of view,
since the all packets are divided into different coding units,
the decoding delay for all packets is determined by the stalled
coding unit. Though small coding unit has large successful
decoding probability, the less number of associated encoded
packets in each coding unit leads to low recovery capability
and large decoding delay of all packets. As shown in Fig. 7 (b),
when k is reduced to 1, the number of coding units is 6.
We find that, if 6 packets are blocked, the 6 received packets
are still not able to decode because not all coding units
receive enough packets. In this case, the decoding successful
probability by the first 6 received encoded packets is only
(C1

2)6

C6
12

= 0.07.

Fortunately, if we set the size of coding unit to a appropriate
value, the high coding efficiency is achieved. We give the

example of 3 coding units shown in Fig. 7 (c). When k is
2, all of the 6 source packets are recovered immediately by
the first 6 received packets. This result shows that a proper
value of k achieves a good tradeoff between the tailed delay
and the decoding capability. On the one hand, a large coding
unit easily experiences large delay due to the tailed packets.
On the other hand, the decoding capability of whole data is
impacted as k decreases. Since any encoded packets arriving
at the receiver can only be used to recover the source packets
in the same coding unit, if k is too small, it is hard for all
coding units to receive enough packets to decode.

Next, we give the mathematical analysis on how to obtain
the optimal size of coding unit. Firstly, we calculate the
buffering delay dB in decoding operation. Specifically, in the
decoding operation, the receiver should buffer k encoded
packets before reconstructing the original packets, introducing
the extra buffering delay dB . Since the k packets are sent
back-to-back by the sender, the ith packet has to wait for the
rest k− i packets, with the buffering time as (k−i)MSS

C . Here,
C and MSS denote the bottleneck link capacity and the size
of a TCP segment, respectively. The average buffering delay
for waiting any set of k encoded packets within a coding unit
is calculated as

dB =
k∑

i=1

(k − i)MSS

C
× 1

k
=

(k − 1)MSS

2C
. (3)

Then, we calculate the decoding delay dw for a congestion
window w as

dw = p
w
k

S × (RTTS + dB) + (1− p
w
k

S )×RTTL, (4)

where RTTL and RTTS are the maximum values of the RTT
of paths with and without long flows, respectively. Here, since
the buffering delay for decoding operation is much smaller
than RTTL, we only consider RTTL for the blocked packets.
Based on Equation (4), we obtain the optimal size of coding
unit. Specifically, we compute the corresponding value of
decoding delay dw under different unit size k, and choose
the optimal size of coding unit as the corresponding value of
k to get the minimum dw.

Fig. 8 (b) presents the theoretical results of the decoding
delay for a congestion window dw with varying k and pB .
In Fig. 8 (b), when k is relatively small, dw decreases with
increasing of k. This is because that, for smaller k, more
coding units in a congestion window should obtain enough
packets to decode although the decoding probability pS of
each unit is higher. For large k, dw increases when k becomes
larger, because more packets are easily blocked, resulting in
lower decoding probability of each unit.

We evaluate the accuracy of the theoretical analysis by using
NS2 simulations. We use leaf-spine topology with 10 equal
cost paths. The senders generate 3 background TCP flows
and 100 short TCP flows less than 100KB. The blocking
probability of short flows is 0.3 in this test. The other settings
are same as that in Section III. Firstly, we measured the
proportion of the coding units that can be immediately decoded
by unblocked packets. Fig. 8 (c) shows that pS decreases
monotonically with the increase of k. Then, we statistic the
average decoding delay of congestion window. Fig. 8 (d)
shows that too small or large size of coding unit leads to large
decoding delay. Both the decoding probability and delay in
numerical analysis closely follow the corresponding simulation
results.
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D. Delay Performance Analysis

In our designed CAPS, the long flows are limited to a few
paths when the short flows are transmitted. For the short flows,
once enough number of encoded packets arrive, the original
packets can be recovered immediately by the receiver, thus
greatly reducing the transfer delay. However, the redundancy
still leads to the buffering delay for decoding operation at
the receiver. Here, we analyze the delay performance of short
flows without and with coding.

(i) Without Coding
Given the blocking probability pB for each packet, the prob-

ability for a congestion window with w packets transmitted
through the paths without long flows is (1 − pB)w. Then the
probability for at least a packet experiencing the paths with
long flows is 1 − (1 − pB)w. Finally, we obtain the average
delay dwnc of w packets without coding as

dwnc = (1− pB)w ×RTTS + (1− (1− pB)w)×RTTL.

(5)

(ii) With Coding
Though introducing the buffering delay in the decoding

operation, the coding operation helps short flows to avoid the
impact of blocked packets by long flows. Note that as long
as the buffering delay is too small enough to be negligible
compared to the delay caused by retransmission or even
timeout, the coding method has significant benefit on delay.
The delay improvement is analyzed as following.

For a coding unit, when at least k encoded packets are
transferred through the paths without long flows and success-
fully recovered at the receiver, the total delay of successful
decoding includes both RTTS and the buffering delay. The
probability for this case is the successful decoding probability.
Thus, the average coding delay dw for a congestion window
with w

k coding units is calculated as Equation (4). Taking
Equation (2) and (3) into (4), we obtain

dw = RTTL + (RTTS −RTTL +
(k − 1)MSS

2C
)

× (
r∑

j=0

Cj
k+r × pB

j × (1− pB)k+r−j)
w
k . (6)

Fig. 9 (a) shows the coding delay dw decreases as the redun-
dant packets increasing with a certain blocking probability
pB . The bottleneck link capacity C is 1Gbps and the size
of a TCP segment MSS is 1500 Bytes. We set the size of
congestion window w to 64, then the optimal k values are
calculated to be 29, 31, 33 and 40 by the Equation (4) under
the different pB of 0.2, 0.25, 0.3 and 0.35, respectively. Based
on the measurement result of the maximum RTT on the paths
with and without long flows, RTTS and RTTL are set to
0.1ms and 3ms, respectively. When the blocking probability
pB is increased, the corresponding values of dwnc and dw are
shown in Fig. 9 (b). It is clear that dwnc is much greater than
dw, which means the total delay is significantly reduced by
the coding operation.

E. Traffic Overhead Analysis

The coding operation adds more redundant packets to the
network system, bringing about the traffic overhead. However,
our CAPS design only encodes the short flows, which account
for about 10% of the total network traffic. That means the

Fig. 9. Coding delay with increasing r and pB .

Fig. 10. Traffic overhead with increasing g and pB .

traffic overhead of CAPS is limited. Here, we analyze the
traffic overhead of CAPS.

Supposing the ratio of total packets of long flows to short
flows is g and the total packets of short flows is s, the load
overhead η is calculated as

η =
s
k × r

s + s× g + s
k × r

=
pB

1 + g × (1 − pB)
. (7)

In Fig. 10 (a), the ratio of total packets of long flows to
short flows g is set to from 90%:10% to 99%:1%, which is
heavy-tailed distribution as illustrated in Section 1. The results
show that the traffic overhead increases with larger g, but is
always less than 3.5%. In Fig. 10 (b), it is clear that the traffic
overhead under the increasing blocking probability is less than
5%, that is small enough to be negligible.

VII. IMPLEMENTATION

We implement the design of CAPS with two key points. The
first one is to guarantee the throughput of long flows. When
long flows are transmitted on a few paths, the short flows on
most paths will not be blocked, while the throughputs of the
long flows will be unavoidably decreased. Furthermore, unlike
short flows, the throughput is much more important than FCT
in view of the long flows. Thus, it is necessary to alleviate
this performance impairment of long flows.

Fortunately, we can take advantage of the ON/OFF traffic
pattern of short flows to adaptively adjust the number of paths
for long flows to deal with rapid changes of network dynamics
and make full use of available multiple paths. As shown
in Fig. 4 in Section VI-A, the short flows are only transmitted
during the ON periods, leaving the unused paths during the
long OFF periods. Thus, to ensure the throughput of long flows
without making damage to short flows meanwhile, we adopt
different strategies to control the long flows according to the
traffic mode of short flows.

The packet spraying algorithm of CAPS is specified in
Algorithm 1. Specifically, CAPS samples the short flows
periodically at the switch. When none packet of short flows
is received during the sampling interval T , the mode of short
flows is set as OFF and vice versa. Here, the sampling interval
T is set as 500μs [7], which is the general inactivity gap
between two bursts of packets in short flows. If the short
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flows are in OFF mode, the long flows will be spread to
all paths with RPS to achieve high throughput. Otherwise,
the long flows are limited to a few paths with ECMP to avoid
the impact on the short flow. CAPS is easy to implement in
the switch. It only requires fewer than 50 lines of code change
for routing.

Algorithm 1 Packet Spraying Algorithm of CAPS
1: Initialization:
2: fs[ ]← φ; sL ← 100KB; T ← 500μs; sfmode← OFF
3: When the timer expires after T :
4: if received a packet with its flow size < sL in T then
5: sfmode← ON ;
6: else
7: sfmode← OFF ;
8: reset the timer;
9: On receiving a packet P from TCP flow i:

fs[i] = fs[i] + packet size of P ;
10: if (fs[i] ≥ sL) and (sfmode == ON) then
11: transmit P using ECMP within nL paths;
12: else
13: spray P using RPS within n paths;

The other key consideration of our CAPS is that, in most
cases, it is hard to obtain accurate flow size information at the
start of a flow. For example, the partial results for online query
responses are typically transferred when they are generated,
instead of waiting for the end of the query execution. Thus
under these situations, CAPS needs to work in the dark even
without prior knowledge. In the absence of prior knowledge,
CAPS considers all flows as short flows in the beginning, and
scatters all packets to all paths. When the amount of data
belonging to one flow is larger than the threshold for large
flows (i.e., 100KB) [3], [5], [11], [27], the flow is distinguished
as a long flow and then transmitted in the different way.
Unlike MMPTCP, CAPS transmits long flows by using ECMP
when short flows are in the ON mode and spreads long flows
to all paths when short flows are in OFF mode. For short
flows, CAPS sprays the packets of short flows to all paths
as MMPTCP, but also encodes the short flows using FEC
technology. The experimental results in Section IX show that
CAPS works well in the dark.

In this paper, the long flows select their paths by using
ECMP when the short flows are in the ON mode. That is,
CAPS does not limit the number of paths for long flows.
nL is a periodic statistical variable, which is the number of
large RTTs continuously updated by the sender in a sampling
period (i.e. 200μs). Therefore, nL in CAPS does not make
the performance of long flow worse. To protect short flows,
there will be hash collisions when ECMP is used for long
flows in the ON mode of short flows. However, when the
short flows are in the OFF mode, which is longer than the ON
mode, CAPS sprays the packets of long flows by using RPS.
Thus, CAPS alleviates the hash collision problem and achieves
good throughputs for long flows. In our implementation, we do
not use the priority queues to avoid the head-of-line blocking
caused by the long flows. The reason why we do not choose
this priority scheduling is the flow starvation problem. When
there are many concurrent short flows occupying the higher
priority queue, the packets of long flows are easy to get
starved in the lower priority queue. The flow starvation may

Fig. 11. Varying the number of short flows.

frequently interfere with the TCP transmission scheme such
as retransmission and timeout. In the high workload, this
problem even terminates a TCP connection and degrades the
application performance significantly. Therefore, we choose
the coding scheme to solve the head-of-line blocking problem.
The relevant experimental results are shown in Appendix B.

VIII. TESTBED EVALUATION

In this section, we firstly use a Mininet implementation to
test CAPS. Then we conduct the small-scale testbed experi-
ment in Tencent cloud.

A. Mininet Implementation

In this section, we use a realistic Mininet implementa-
tion [5], [28], [29] in a small-scale testbed to test CAPS’s
broad applicability and effectiveness. We implement CAPS on
Mininet, a network emulation system based on Linux kernel
using virtualization. Mininet’s virtual hosts, switches, links and
controllers are real components running on the standard Linux
kernel, and for the most part their behavior is similar to the
discrete hardware elements.

In this test, CAPS is implemented in Mininet 2.3.0 on a
Ubuntu kylin 16.04. The test topology is leaf-spine network
with 20 equal cost paths shown in Fig. 1(a). We set the link
bandwidth to 20Mb and delay to 1ms [5]. POX is installed
as the controller on switches to support ECMP and RPS. The
buffer size at switches is 256 packets. The default numbers of
short flows and long flows are 100 and 4 [30], respectively. The
sizes of short flows are randomly distributed within 100KB.
The sizes of long flows are larger than 10MB [31]. The overall
traffic obeys heavy-tailed distribution as illustrated in [3].

We normalize the results of ECMP, RPS, RepFlow and
Freeway to that of CAPS. Then we compare the performances
of them with varying number of short or long flows. RepFlow
simply replicates each short flow to reap multipath diversity
to minimize the flow completion time. Freeway adaptively
partitions the paths into low latency paths and high throughput
paths respectively for the short and long flows to alleviate the
impact of long flows to the short ones.

In Fig. 11 (a), the normalized AFCT of ECMP, RPS,
RepFlow and Freeway is larger than 1, meaning that CAPS
achieves the smaller AFCT of short flows. Specifically, CAPS
reduces the AFCT of short flows by ∼50%-70%, ∼40%-60%,
∼30%-40% and ∼1%-5% with increasing the number of short
flows over ECMP, RPS, RepFlow and Freeway, respectively.
This is because CAPS is not affected by the head-of-line
blocking or packets reordering, only requires to receive suf-
ficient packets regardless of which path they come from.
Since ECMP and RPS are agnostic to the short and long
flows, the short flows suffer from the long queueing delay
and long-tailed FCT. The performance of RepFlow is worse
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Fig. 12. Varying the number of long flows.

Fig. 13. Varying the ratio of ON periods to total ON and OFF periods of
short flows.

than CAPS, because RepFlow only replicates, but does not
isolate the short flows from the long flows on different
paths. Moreover, the traffic overhead of RepFlow limits its
performance improvement under the heavy load.

Fig. 11 (b) shows the normalized throughputs of long
flows with increasing number of short flows. CAPS improves
the throughputs of long flows by ∼30%-40%, ∼25%-45%,
∼25%-35% over ECMP, RepFlow and Freeway, respectively.
The reason is that ECMP, RepFlow and Freeway employ only
one path to transfer each long flow, resulting the low utilization
on the multiple paths. CAPS and RPS work on the packet-
level and flexibly scatter the packets to all paths, obtaining
the higher throughputs of long flows. Since CAPS sprays the
packets of long flows to all paths only during the OFF periods
of short flows, the throughputs of long flows in CAPS are
lower than that of RPS, showing the tradeoff between the delay
gain of short flows and the throughput loss of long flows.

Fig. 12 (a) shows the normalized AFCT with varying
number of long flows. Compared with the other schemes,
CAPS achieves the better performance. However, with the
increasing number of long flows, much more traffic is injected
into the network system. Moreover, more long flows lead to
larger blocking probability and thus more redundant packets
after the coding operation, making the network congestion
heavier. Thus, the performance improvement for short flows
becomes less compared with the case of increasing only the
number of short flows. Fig. 12 (b) shows that CAPS obtains
the higher throughputs of long flows compared with ECMP,
RepFlow and Freeway.

We test the CAPS performance under different ratios of
ON periods of short flows. Specifically, we use the leaf-
spine topology with 20 equal cost paths. The other parameters
like the bandwidth, link latency, buffer size and flow size
distribution are the same as the experiments in this section.
There are 3 long flows each taking a different path without
hash collision. The default number of short flows for each
ON period is 50.

As shown in Fig.13 (a), the improvement of CAPS in the
average FCTs of short flows increases with larger ratio of ON
periods. CAPS outperforms the others because the long flows
are switched to ECMP during ON periods of short flows, thus

Fig. 14. Varying the number of short flows.

reducing the impacts on short ones. In Fig.13 (b), when the
ratio of ON periods of short flows is 0, CAPS sprays long
flows to all available paths without switching and therefore
gets the same performance as RPS. With the increasing of
ON periods of short flows, the long flows are transmitted in
ECMP for longer period. In this case, although the long flows
suffer from throughput loss because they do not utilize all
paths, the short flows obtain great performance gain in AFCT.

B. Testbed in Cloud

We conduct the testbed experiment in Tencent cloud with
the real environment of data center network. Specifically,
in this part, the performances of 6 different schemes including
ECMP, RPS, RepFlow, Freeway, CAPS and CAPSdark are
evaluated in the Tencent cloud, which is a leading public cloud
service provider in China. We build a leaf-spine testbed to cre-
ate 6 paths between any pairs of servers from 2 ToR switches
as shown in Fig.1. We use Cloud Virtual Machine (CVM)
as servers with dual core Intel Xeon Skylake 6133 CPU and
CentOS 7.2 (kernel 3.10.0-327.e17.x86_64) installed. The link
bandwidth is 1Gbps and the switch buffer size is 512 packets.
We generate 2 long flows (>10MB) and short flows (<100KB)
between random pairs of servers following a Poisson process.
The number of short flows varies from 10 to 100.

Fig.14 shows the performance of each scheme as the number
of short flows increases. In Fig.14 (a), CAPS outperforms
the other schemes in the average completion time of short
flows because CAPS uses the encoded packets from non-
congested paths to recover the source packets and mask the
negative effects of reordering and packet loss. Fig.14 (b) and
Fig.14 (c) show the 50th and 99th percentile FCT of short
flows, respectively. For CAPS, since the short flows avoid
reordering and being blocked by long flows through coding,
the tailed FCT is reduced by ∼60%-∼70%, ∼55%-∼65%,
∼45%-∼55% over ECMP, RPS and RepFlow, respectively.
Fig.14 (d) shows the average throughput of long flows. Since
each long flow in ECMP, RepFlow and Freeway can only be
transmitted on a single path, CAPS and RPS outperform these
three schemes by up to 45%.

C. Coding Overhead

The coding and decoding operations bring about the
additional processing delay in TCP stack. We measure the
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Fig. 15. Coding delay overhead.

Fig. 16. CPU and memory overhead at end-hosts.

encoding and decoding delay to test the impact of the delay
caused by coding and decoding operations. Moreover, we test
the CPU and memory utilization ratio at the end-hosts.

Firstly, we measure the ratios of encoding delay and decod-
ing delay to the round trip time on the default experimental
settings in Section VIII-A. Since the receiver conducts the
decoding after all the packets in coding unit arrive, to give
the details of decoding delay, we measure the decoding delay
including and excluding the waiting time for the late-arriving
packets in the same coding unit. As shown in Fig.15 (a),
the ratios of encoding and decoding time increase with larger
coding unit. This is because more data packets are involved in
encoding and decoding processes, resulting in larger process-
ing delay. The average time consumed by both encoding and
decoding without waiting delay is less than 5% even if the
coding unit size increases to 16.

Secondly, we test the processing delay of LDPC itself.
Specifically, we measure the encoding and decoding time
with different sizes of short flows at end-hosts. In this test,
the coding unit size equals to the congestion window size
during transmission and the initial congestion window is set
as 10. As shown in Fig.15 (b), with increasing number of
packets in each short flow, the encoding and decoding delay
without waiting for late-arriving packets in coding unit remains
constant at about 0.2ms, while the decoding time with waiting
delay increases from 0.2ms to 0.6ms. This result indicates
that the impact of processing delay of coding is very small
compared with the gain in flow completion time (i.e., about
20ms) of short flows.

Finally, in order to evaluate the system overhead of CAPS,
we gradually increase the coding unit size from 2 to 16 and
measure resource consumption at end-hosts with Intel Xeon
E5-2687W CPU and 2GB memory. The results of average,
maximum and minimum CPU and memory consumption for
encoding and decoding are shown in Fig.16 (a) and Fig.16 (b),
respectively. The average and maximum CPU consumption are
less than 5% and 6.5%, respectively. For memory consump-
tion, the cost is less than 2% of memory under different sizes
of coding unit.

Overall, since CAPS only encodes short flows, which
account for less than 10% of the total traffic in data centers [3],

Fig. 17. Web search (WS) and data mining (DM) applications.

[4], [5], [17], the corresponding coding and decoding oper-
ations do not incur excessive procession delay and system
overhead.

IX. SIMULATION EVALUATION

To evaluate the performance of CAPS in the large-scale
scenarios, we conduct the NS2 simulation tests in the web
search [17] and data mining [32] application scenarios. In the
web search scenario, 30% of flows larger than 1MB provide
more than 95% bytes. In the data mining scenario, ∼ 3.6%
flows larger than 35MB provide 95% bytes, while around 80%
of flows are less than 100KB.

A. Performances in Leaf-spine

We use the leaf-spine topology with 24 ToR switches,
each of which connects to 36 hosts. The whole network has
864 hosts and 12 core switches. There are 12 equal cost
paths between any pair of hosts. All flows are generated
between random pairs of hosts following a Poisson process
with load varying from 0.1 to 0.8 to thoroughly evaluate
CAPS’s performance. We also test the performance of CAPS
without prior knowledge of flow size.

Here, we focus on the flow completion time of short flows
and the throughputs of long flows with the web search and
data mining workloads as shown in Fig. 17. Fig. 17 (a) and
Fig. 17 (d) show the average flow completion time, while
Fig. 17 (b) and Fig. 17 (e) give the 99th percentile FCT,
presenting the tail FCT. Fig. 17 (c) and Fig. 17 (f) show the
throughputs of long flows.

We observe that CAPS improves the AFCT and tail FCT
significantly compared to the other schemes except for Free-
way, especially in high workloads. Presto [8] achieves better
load balancing at flowcell granularity (i.e., 64KB) and miti-
gates the packet reordering, but it is agnostic to congestion
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and does not distinguish between short and long flows. Thus,
the FCT performance of Presto is not better than CAPS.
Under the web search workload, CAPS reduces the AFCT
of short flows by ∼60%-70%, ∼50%-60%, ∼40%-55% and
∼40%-50% for loads from 0.3 to 0.8 over ECMP, RPS, Presto
and RepFlow, respectively.

The results demonstrate the advantage of CAPS in the
typical multi-path topology. CAPS avoids the impact of out-of-
order and head-of-line blocking problems due to the mixture of
short and long flows. When the workload becomes high, more
long flows occupy more paths, with the result that more short
flows hit the long tail. CAPS is able to get enough gain by
adaptively adjusting the redundancy of short flows and limiting
the number of long flows’ paths. For the other schemes, since
most short flows experience large queueing delay, the delay
performance is degraded. Only the result of Freeway is close
to CAPS, because Freeway dynamically separates the short
and long flows. We also test the performances of ECMP and
RPS with the priority queue, which assigns high priority to
short flows. With the help of priority queue, the performances
of short flows in ECMPpq and RPSpq are improved compared
with ECMP and RPS.

Moreover, though CAPSdark has not any prior knowledge
of the flow size, the impact of long flows on the short flows
is negligible when the long flows are regarded as short flows
in the beginning, because the number of long flows for each
ToR switch is very small (i.e., less than 4) and the threshold
for large flows in CAPSdark is only 100KB. Thus, CAPSdark

achieves almost the same performance as CAPS.
We also find that the short flows in the data mining workload

has lower AFCT than those in the web search workload. The
reason is that the data mining workload has more obvious
boundary between the vast majority of short flows and a few
long flows, while in the web search workload there are many
medium flows between 100KB and 1MB. These medium flows
are not encoded and lead to larger queueing delay.

We test the throughputs of long flows. As shown
in Fig. 17 (c) and Fig. 17 (f), RPS obtains the highest
throughput, because it spreads the packets of long flows to
all paths. Presto also achieves high throughput by scattering
the long flows among all parallel paths at flowcell granularity.
Since ECMP, RepFlow and Freeway do not effectively utilize
all available multiple paths, all of them have lower throughput.
The long flows in ECMPpq and RPSpq with priority queue
experience throughput degradation due to their large queueing
delay. As a packet-level scheme, CAPS flexibly adjusts the
number of paths for long flows according to the ON/OFF mode
of short flows. When the short flows are in OFF mode, CAPS
scatters the packets of long flows to all paths, significantly
improving the throughput of long flows compared to the flow-
level schemes. Moreover, since the threshold for large flows
in CAPSdark is 100KB, which is much smaller than the long
flow size, CAPSdark has the similar performance to CAPS.

B. Performances in FatTree

The performance of CAPS under the FatTree topology is
evaluated. The number of pods gradually increases from 4 to
12 with fixed 30% traffic load. The number of servers con-
nected to ToR switch under one pod increases from 4 to
36 accordingly. The buffer size is 256 packets. The bandwidth
of all the links is set to 1Gbps and the propagation delay
among pods is 100μs. In this test, the senders and receivers
are randomly selected among pods.

Fig. 18. Web search and data mining applications under FatTree.

Fig. 19. Smoothed RTT and average RTT.

As shown in Fig.18 (a) and Fig.18 (c), the AFCT of short
flows for CAPS in both the web search and data mining sce-
narios under FatTree topology is smaller than other schemes.
This is because the encoded packets of CAPS can recover the
blocked packets and avoid the negative impact of reordering in
a timely manner. In Fig.18 (b) and Fig.18 (d), the throughputs
of long flows in CAPS are close to RPS, because CAPS utilizes
multiple paths by flexibly spraying packets like RPS when the
short flows are in the OFF mode. The performances of long
flows in ECMP, RepFlow and Freeway are poor due to the
flow-based hashing policy, which may cause flow collisions
on some paths while the other paths are not congested.

C. Impact of Network Dynamic

In our design, CAPS calculates the blocking probability
according to RTT. The blocking probability varies with the
rapid change of the network conditions such as bandwidth
and delay when the burst requests from a lot of hosts are
generated. We vary the distribution of burst requests to test
the accuracy of RTT measurement and CAPS performance
under the dynamic network status.

Specifically, in this part, we use the leaf-spine topology con-
sisting of 20 ToR and 20 core switches. There are 28 servers
connected to each ToR switch. The bottleneck link bandwidth
and buffer size are 1Gbps and 256 packets, respectively. The
propagation delay is set to 100μs. Additionally, all short
flows with random size less than 100KB and 10 long flows
larger than 20MB are generated in heavy-tailed distribution.
Each burst of 500 short flows arrives in Poisson distribution.
We gradually increase the parameter of Poisson distribution
from 5 to 40 to vary the intensity of burst requests.

Fig.19 shows the changes of average RTT RTTavg and
smoothed RTT RTTsmooth. The value of RTTavg is the aver-
age of all instantaneous RTTs in a sampling period. The value
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Fig. 20. Varying the parameter λ of Poisson distribution.

of RTTsmooth is calculated by 7
8RTTsmooth+ 1

8RTTavg. The
sampling period of RTT is twice the propagation delay (i.e.
200μs). As shown in Fig.19 (a) and Fig.19 (b), the value of
smoothed RTT is close to that of average RTT. This is because
that the instantaneous RTTs on all paths in a sampling period
are averaged, reducing the difference between RTTavg and
RTTsmooth. In CAPS, the blocking probability is the ratio
of the number of ACK packets with RTT larger than twice
smoothed RTT to the total number of received ACK packets
at the sender. Therefore, the blocking probability calculated
by smoothed RTT is close to that calculated by instantaneous
average RTT. Thus, the blocking probability could capture the
accurate congestion states under the rapidly changing network
scenario.

We test CAPS performance under different intensities of
burst requests. As shown in Fig.20 (a), when the parameter λ
of Poisson distribution increases, all schemes experience larger
AFCT due to higher burstiness. However, CAPS achieves
larger improvement under larger λ compared with the others.
This is because that CAPS timely recovers the original packets
and mitigates the negative impact of packet loss and reordering
caused by the rapid changing of network conditions. Fig.20 (b)
shows that the throughputs of long flows decrease a little under
larger intensity of burst requests. The reason is that, when the
arrival intensity of the short flows increases, the completion
times of short flows increase due to heavier congestion. In the
longer ON period of short flows, the long flows use ECMP and
reduce their throughputs. Nonetheless, since the traffic size of
short flows is small compared with long flows, the impact of
λ is limited. CAPS obtains the close throughput to RPS.

D. Impact of Coding Unit Size

To evaluate the performance of CAPS with optimal coding
unit, we conduct simulations to compare the AFCT and
decoding delay per packet with large, small and appropriate
coding unit. The simulation settings are as same as that in
Section VI-C.

We test the impact of coding unit size on the delay per-
formance of 100KB short flows. As shown in Fig. 21 (a)
and Fig. 21 (b), both AFCT and average decoding delay per
packet increase with larger number of short flows. Specifically,
the AFCT with the optimal k is reduced by up to ∼15% and
∼40% compared with that of large and small k, respectively.
The decoding delay of optimal coding unit is reduced by
up to ∼10% and ∼30% compared to the results with large
and small k, respectively. This result shows that CAPS with
optimal coding unit improves the decoding probability and
thus reduces the decoding delay.

Next, we evaluate the delay performance of 100 flows with
different sizes of coding unit. From Fig. 22 (a) and Fig. 22 (b),
we observe that the performance gain of the optimal coding
unit becomes larger with the increasing flow size, which leads

Fig. 21. Varying the number of short flows.

Fig. 22. Varying the size of short flows.

Fig. 23. Hybrid applications under fixed large-scale leaf-spine topology.

to larger congestion window. The reason is that, with the
increase of congestion window, the coding efficiency decreases
dramatically when k is set to the congestion window or a min-
imum value. This means that CAPS with optimal coding unit
exhibits more robust scalability and better coding efficiency.

E. System Overhead

Firstly, we test the CAPS performance under different loads
for hybrid applications in large-scale simulations. Meanwhile,
we analyze the impact of the accuracy of distinguishing ON
and OFF modes of short flows on the throughput of long
flows. Specifically, we use the leaf-spine topology consist-
ing of 12 ToR and 20 core switches. There are 28 servers
connected to each ToR switch. The bottleneck bandwidth and
switch buffer size are 1Gbps and 256 packets, respectively. The
propagation delay is set to 100μs. Additionally, we generate
mixed traffic for web search and data mining applications with
the same features as that in Section IX-A. Each application
accounts for 50% of the total traffic.

As shown in Fig.23 (a), CAPS outperforms the other
schemes in average FCT since the blocked and lost packets are
recovered by the encoded packets. Fig.23 (b) shows that CAPS
achieves high throughput of long flows, because the long flows
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Fig. 24. Traffic overhead.

Fig. 25. Effective link utilization.

are adaptively switched between ECMP and RPS according to
the ON and OFF modes of short flows. In our design CAPS,
if the packets of short flows are transferred in a given sampling
period, the long flows will use ECMP in the next sampling
period. However, due to RPS’s random packet spraying, there
may exist some paths that are not utilized by short flows during
their ON periods under the light load of large-scale networks.
Since the long flows use ECMP in the ON periods of short
flows to mitigate the impact on short flows, these paths may
also be not used by long flows, resulting in loss of network
utilization. We measure the average ratios of unused paths by
short flows to all paths. As shown in Fig.23 (c), the average
ratio of unused paths is less than 5% and decreases with
heavier traffic load. This result indicates that, when the traffic
load increases, the short flows make better use of multiple
paths, resulting in less loss of network utilization.

Secondly, we measure the percentages of extra bytes
caused by coding in both workloads scenarios with varying
redundancy. In our test, 12 spine switches are connected to
each ToR, i.e., there are 12 equivalent paths on each ToR
switch. The coding unit size (k) is 10. We set the number
of long flows from 1 to 4 according to [30]. Then the
corresponding numbers of the redundant packets are 1, 2,
4 and 5, respectively.

As shown in Fig. 24, even if the redundancy is 5 packets,
the traffic overheads for both the web search and data mining
application scenarios are very small, less than 3% and 1%,
respectively. Compared with the overall traffic, such a small
amount of overhead can be ignored.

Fig.25 shows the effective link utilization of spine switches.
The effective link utilization is the ratio of network goodput
to link bandwidth. As shown in Fig.25 (a) and Fig.25 (b),
though the effective link utilization deceases a little with larger
r, it is almost equal to the load in both the web search and
data mining application scenarios. This is because CAPS only
encodes short flows, which account for less than 10% of the
total traffic [3], [4], [5], [17], and the corresponding redundant
traffic overhead is only less than 5% of the overall traffic.

X. CONCLUSION

To mitigate the negative impact of short and long flows
on each other in data center networks, we propose CAPS,

a coding-based adaptive packet spraying design that reduces
the flow completion time for short flows and guarantees the
throughputs for long flows. CAPS utilizes the FEC code to
encode only the short flows and spreads the packets of short
flows to all equal cost multipath. CAPS limits the long flows
when coexisting with the short flows to avoid the head-of-
line problem and scatters the packets of long flows to the
unused paths by the short flows to achieve high throughput.
We evaluate CAPS with both NS2 simulations and small-scale
Mininet testbed. The results indicate that CAPS significantly
reduces the AFCT by ∼30%-70% for short flows and achieves
high throughput for long flows with negligible traffic overhead.

APPENDIX A
PERFORMANCES IN INCAST SCENARIOS

With more flows or smaller buffer size, the redundant
packets of CAPS are more difficult to recover the loss packets.
However, since the redundant encoded packets can reduce the
timeout probability of short flows especially due to the tail loss
(i.e., at least one of the last three packets in the last round are
lost), CAPS outperforms the other schemes in increasing the
maximum number of supported concurrent short flows without
TCP Incast.

We test the performances of five different schemes including
ECMP, RPS, RepFlow, Freeway and CAPS under two Incast
scenarios. In the first scenario, only the short flows are
delivered to a single destination. In the second one, the short
flows and 3 background long flows are tested. In these two
cases, we use the leaf-spine topology with 40 parallel paths
connected with 1Gbps links. The oversubscription ratio on
the leaf switch at the destination is 40:1. The buffer size
is 256 and 100 packets in the two scenarios, respectively.
The other experimental settings are the same as those in
Section III. The short flows are transmitted simultaneously
from multiple hosts under randomly selected ToR switches to
a same receiver. We gradually increase the number of short
flows from 20 to 180. The sizes of short flows are uniformly
distributed from 15KB to 100KB.

Fig.26 shows the test results of the first case with only
short flows. In Fig.26 (a), the ratio of encoded packets to
all packets of short flows increases with larger number of
short flows, because the blocking probability increases with
heavier congestion state. However, CAPS only encodes short
flows, which account for less than 10% of the total datacenter
traffic [3], [4], [5], [17]. Therefore, the coding redundancy is
only less than 6% of the overall traffic. Because of the same
reason, although the packet loss ratio of short flows is large as
shown in Fig.26 (b), the packet loss ratio to the overall data
center traffic is still less than 10%. Moreover, as long as the
encoded packets are able to timely recover the blocked ones,
the number of timeouts is reduced.

Consequently, as shown in Fig.26 (c), CAPS achieves the
smallest number of timeouts until the number of short flows
exceeds 100. As the number of flows continues to increase,
though CAPS experiences more timeouts due to the negative
impact of redundant packets, the performance degradation of
CAPS is very small. RepFlow simply replicates all short flows
to reap multipath diversity, but increases the traffic overhead
and flow concurrency, resulting in the largest number of
timeouts. Since RPS randomly sprays all packets to available
paths, its flow concurrency is higher than the flow-based
schemes, resulting in more timeouts than ECMP and Freeway.
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Fig. 26. The first Incast scenario without long flows.

Since there is no long flow in this case, Freeway assigns all
paths to short flows and thus gets the same performance as
ECMP. As the buffer size decreases, the congestion becomes
more serious. Thus, the packet loss ratio increases and the
timeout occurs earlier than that of the cases with 256 packets
buffer in all schemes.

Fig.26 (d) shows the network goodput. CAPS obtains the
highest goodput for supporting more flows without Incast.
Finally, compared with the other schemes without coding,
CAPS effectively reduces the average FCT until the number
of short flows exceeds 100 as shown in Fig.26 (e). As the
number of flows continues to increase after 100, compared
with ECMP and RPS, CAPS suffers from small performance
degradation due to traffic overhead.

Fig.27 shows the test results of the second case with both
short and long flows. Since the long flows have much more
data than short ones, the network congestion is aggravated.
Thus, as shown in Fig.27 (a), CAPS has to use more encoded
packets to recover the blocked ones and gets higher ratio
of redundant packets compared with the results of the first
scenario. However, the coding redundancy is only less than
8% of the overall traffic because short flows only provide
less than 10% of the total traffic. Fig.27 (b) and Fig.27 (c)
show that, though all schemes experience more packet loss
and timeouts with the background long flows, CAPS still effec-
tively alleviates the timeout by its coding scheme. Therefore,
CAPS achieves the highest goodput as shown in Fig.27 (d).
Unlike the first scenario, the flow concurrency of Freeway
is lower than that of ECMP in the second scenario due to
less paths taken by the short flows in Freeway. Therefore,
Freeway performs better than ECMP and close to CAPS,
which performs the best until the number of short flows
exceeds 120 shown in Fig.27 (e). Fig.27 (f) shows that the
throughputs of long flows decrease with larger number of short

Fig. 27. The second Incast scenario with long flows.

flows. CAPS obtains lower throughput of long flows than RPS,
showing the tradeoff between the delay gain of short flows and
the throughput loss of long ones. Compared with the hash-
based transmission in ECMP, RepFlow and Freeway, CAPS
achieves better performance of long flows because long flows
are sprayed to all paths during the OFF periods of short flows.

APPENDIX B
COMPARISON WITH PRIORITY QUEUE SCHEMES

We conduct experiments to compare the performance of
ECMP and RPS with and without priority queue, which are
denoted by ECMPpq and RPSpq, respectively. In the priority
queue, a short flow with high priority is served before a
long flow with low priority. Specifically, we use the leaf-
spine topology with 12 parallel paths connected with 1Gbps
links. The other experimental settings are the same as those
in Section III. The mixture of short flows ranging from 15KB
to 100KB and 3 background long flows larger than 10MB are
generated in heavy-tailed distribution. We gradually increase
the number of short flows from 20 to 180 and show the
performances of short and long flows in Fig.28 and Fig.29,
respectively.

Fig.28 shows the performances of short flows. As shown
in Fig.28 (a), the packet loss ratio increases in all schemes
with more short flows. Since the priority queue policy ensures
high priority for short flows, the packet loss ratios of RPSpq
and ECMPpq are significantly lower than that of RPS and
ECMP, respectively. In Fig. 28 (b), RPS has the largest ratio
of disordered packets, because the long and short flows are
sprayed to all paths and mixed together. ECMP and ECMPpq
have no disordered packets due to the flow-based transmis-
sion. Although RPSpq and CAPS can reduce the impact of
long flows on short ones, they still have disordered packets
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Fig. 28. The performance of short flow.

Fig. 29. The performance of long flow.

due to the packet-based transmission. Fig.28 (c) shows that,
compared with the cases without priority queue, the AFCTs
of short flows in ECMP and RPS with priority queue are
lower. RPS performs poorly due to its high packet disorder
ratio. Since using the encoded packets to recover the lost and
disordered packets, CAPS achieves the lowest AFCT. We plot
the CDFs of FCTs for 120 short flows in Fig.28 (d). The FCTs
of CAPS is much smaller than the other schemes.

Fig.29 shows the performances of long flows. In Fig.29 (a),
the long flows in ECMPpq and RPSpq suffer from higher
queueing delay due to their low priorities. Therefore, as shown
in Fig.29 (b), the throughputs of long flows decrease in
ECMPpq and RPSpq compared with ECMP and RPS, respec-
tively. In addition, coupled with the hash collisions between
long flows, the performance of ECMPpq becomes the worst.
For CAPS, the throughput of long flows is close to RPS,
since the long flows adaptively spray packets to multiple paths
during the OFF periods of short flows. Compared with priority
queue policy, CAPS obtains the good tradeoff between the
performances of short and long flows.
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