
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

A Receiver-Driven Transport Protocol with High
Link Utilization Using Anti-ECN Marking in Data

Center Networks
Jinbin Hu, Jiawei Huang, Member, IEEE, Zhaoyi Li, Jianxin Wang, Senior Member, IEEE

and Tian He, Fellow, IEEE, ACM

Abstract—Existing reactive or proactive congestion control
protocols are hard to simultaneously achieve ultra-low latency
and high link utilization across all workloads ranging from
delay-sensitive flows to bandwidth-hungry ones in datacenter
networks. We present an Anti-ECN (Explicit Congestion Notifica-
tion) Marking Receiver-driven Transport protocol called AMRT,
which achieves both near-zero queueing delay and full link
utilization by reasonably increasing sending rate in the case of
under-utilization. Specifically, switches mark the ECN bit of data
packets once detecting spare bandwidth. When receiving the anti-
ECN marked packet, the receiver generates the corresponding
marked grant to trigger more data packets. The testbed and
simulation experiments show that AMRT effectively reduces the
average flow completion time (AFCT) by up to 42% and improves
the link utilization by up to 38% over the state-of-the-art receiver-
driven transmission schemes.

Index Terms—Data center, receiver-driven, link utilization.

I. INTRODUCTION

MODERN data centers host diverse applications such as
web search, social networking, deep learning and data

mining. With the increasingly stringent demand on both low
latency and high throughput in these datacenter applications,
numerous of transport protocols are proposed to optimize
the flow completion time by using reactive congestion con-
trol algorithms at sender side [2]–[7]. Since only reacting
after congestion already happens, the sender-side transport
protocols inevitably induce queue buildup, which adversely
affects the performance of short or tiny flows in delay-sensitive
applications such as remote procedure calls (RPCs) [8].

In recent years, receiver-driven transport protocols such as
pHost [9], NDP [10], ExpressPass [11] and Homa [8] have
been proposed to guarantee near-zero queueing delay by using
proactive congestion control mechanism. These receiver-driven
transport protocols conservatively trigger new data packets
according to the data arrival rate at the receiver. Specifically,
when a data packet arrives at the receiver, a corresponding
grant packet is generated and returned to the sender to trigger
only one new data packet called scheduled packet. Therefore,

J. Hu is with the School of Computer and Communication Engineering,
Changsha University of Science and Technology, Changsha 410114, China.

J. Huang, Z. Li and J. Wang are with School of Computer Science and
Engineering, Central South University, Changsha 410083, China. E-mail:
jiaweihuang@csu.edu.cn

T. He is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455, USA.

A preliminary version of this paper appears in ACM ICPP [1], Edmonton,
Alberta, Canada, August, 2020.

these receiver-driven transport protocols effectively achieve
ultra-low queueing delay and significantly improve perfor-
mance of delay-sensitive application.

However, the conservative receiver-driven transport proto-
cols are not able to actively probe the available bandwidth
and increase sending rate even in the case of spare bandwidth.
As a result, the receiver-driven transport protocols potentially
suffer from under-utilization problem, especially in the multi-
bottleneck and dynamic traffic scenarios. (1) When a flow
passes through multiple bottleneck links, its rate is limited by
the most congested bottleneck. Due to the conservativeness of
the receiver-driven transport protocols, when free bandwidth
arises in the other bottleneck links, the coexisting receiver-
driven flows are not able to grab the available bandwidth,
leading to low link utilization. (2) Under the highly dynamic
traffic in data center, the link bandwidth is potentially wasted
in the receiver-driven transmission. When multiple flows to
different receivers share the same bottleneck link, even though
some flows finish transmission, the remaining ones are unable
to fill up the available bandwidth, further reducing the link
utilization.

Fortunately, the marking-based explicit feedback is an effec-
tive mechanism to address the link under-utilization problem.
We introduce the explicit feedback into the receiver-driven
transport protocol, called as AMRT, which uses anti-ECN [12]
marked packets to notify the sender of link under-utilization
and correspondingly increases sending rate to grab spare
bandwidth. Specifically, when the time interval between two
consecutive packets is greater than the transmission time of
one packet, inspired by the AntiECN [12], the switch marks
the ECN bit of the dequeued packet. Then the corresponding
marked grant will be generated at the receiver to trigger more
data packets. The receiver-driven sender increases its sending
rate to match the available bandwidth.

The objective of AMRT is to achieve the ultra-low latency
and ultra-high link utilization simultaneously. On the one hand,
AMRT takes advantage of conservative receiver-driven trans-
mission to guarantee near-zero queueing delay. Once receiving
a grant without anti-ECN marking, the sender conservatively
triggers only one new data packet. On the other hand, AMRT
ensures full link utilization with the aid of explicit anti-ECN
marking. Once receiving a grant with anti-ECN marking, the
sender aggressively triggers two new data packets to grab the
free bandwidth.

In summary, our major contributions are:

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

• We conduct an extensive simulation-based study to ana-
lyze two key issues that lead to low link utilization issues
in receiver-driven transmission: (1) when one flow passes
through multiple bottleneck links, the spare bandwidth
released by it at the bottlenecks other than the most
congested one can not be utilized by the other coexisting
flows, (2) when multiple flows share the same link in
the dynamic traffic scenario, if some flows finish their
transmissions, the other flows are not able to get more
grants to seize the free bandwidth.

• We integrate the explicit feedback into receiver-driven
transport protocol called AMRT, which uses anti-ECN
marking to explicitly notify the sender of spare bandwidth
at the bottleneck link. Therefore, AMRT increases ag-
gressiveness of conservative receiver-driven transmission
to guarantee ultra-low latency and high link utilization
simultaneously.

• By using both testbed implementation and NS2 simula-
tions, we demonstrate that AMRT performs remarkably
better than the state-of-the-art receiver-driven transport
protocols. AMRT reduces the average flow completion
time (AFCT) by 19%-42% under heavy workload and
yields up to 38%, 28%, 22% and 11% link utilization
improvement over pHost, ExpressPass, Homa and NDP,
respectively.

The rest of the paper is organized as following. In Section
II, we present the related work. In Section III and IV-D, we
respectively describe our design motivation and overview. In
Section IV, we introduce the design details of AMRT. We
give the model analysis of AMRT in Section V and discuss
the implementation in Section VI. In Section VII and VIII,
we show the testbed experimental and NS2 simulation results,
respectively. We conclude the paper in Section IX.

II. RELATED WORKS

We compare AMRT with the sender-based, rate allocation,
explicit flow control and receiver-driven mechanisms.

DCTCP [2] uses ECN marking [13]–[16] ratio to adjust
the congestion window. D2TCP [17] adjusts rate to maximize
the deadline-meeting rate. DCQCN [18] uses fine-grained con-
gestion control to adjust sending rate. TIMELY [19] leverages
RTT to reduce congestion. Compared with the traditional TCP,
these protocols achieve a good balance between low delay and
high throughput. However, they may still suffer from buffer
overflow under highly concurrent flows.

Several proposals use rate control techniques to achieve the
target rate quickly [20]–[23]. PIAS [20] schedules packets
based on the priority queues. Auto [21] schedules by deep
reinforcement learning. Karuna [23] schedules a mix of flows
to achieve good performance. TFC [24] allocates tokens to
achieve near-zero queueing. ExpressPass [11] controls con-
gestion by shaping the credit packets. However, these schemes
require rate calculation or global scheduling, which incur delay
overhead especially for short flows.

Lots of transport protocols accurately adjust rate to match
the link capacity by using explicit feedback from switches.
XCP [25] and VCP [26] leverage explicit feedback with
multiple bits to regulate congestion window. Recently, HPCC

[27] leverages in-network telemetry (INT) technique to obtain
precise link load to control traffic precisely. However, it is hard
for these protocols to make a tradeoff between low feedback
overhead and accurate rate adjustment.

Recent receiver-driven transport protocols are proposed to
achieve ultra-low queueing delay in DCNs [8]–[10], [28],
[29]. pHost [9] performs distributed per-packet scheduling at
the end hosts. NDP [10] cuts payloads and uses a receiver-
pulled mechanism to control incoming traffic. Homa [8] uses
a receiver-driven flow control mechanism and in-network pri-
ority queues to provide good performance. Aeolus [29] assigns
a higher drop priority for unscheduled packets. Through the
proactive congestion control mechanism, these conservative
transport protocols guarantee the bounded queueing delay.
However, they still potentially suffer from low link utilization
under multi-bottleneck and high dynamic traffic scenarios.

In contrast with the above transport mechanisms, our so-
lution AMRT works through a different perspective: AMRT
uses anti-ECN marking to notify senders to increase sending
rate to make a sufficient use of free bandwidth, thus achieving
better transport performance in terms of low latency and high
link utilization simultaneously without any traffic overhead.

III. DESIGN MOTIVATION

To motivate our design, we have investigated the impact of
the receiver-driven transmission scheme on link utilization in
multiple bottlenecks and dynamic traffic scenarios.

A. Link Under-utilization in Multiple Bottlenecks Scenario

The multiple bottlenecks widely exist in datacenter networks
[30], [31], [32]. In multi-rooted tree topologies such as [33]
and Fat-tree [34], it is common that cross-rack flows coexist
with a variable number of background flows at each hop,
resulting in multiple bottlenecks [35], [24]. For example, dur-
ing the distributed training process of computation-intensive
machine learning, the massive number of model parameters
need to be updated synchronously by using a large number
of cross-rack flows, which traverse multiple hops between
thousands of servers at the end of each iteration [36], [27],
[37], [38]. From the study in [39], about 4.3% packet drop rate
caused by congestion at 80% load almost occurs at the last hop
of the access destination link. Moreover, the observations from
[31] and [40] show that the links with losses due to congestion
have nearly 60% utilization at the edge layer, while the links
with losses have less than 30% utilization in the core and
aggregation layers.

In practice, it is common that the datacenter network
traverses multiple bottlenecks and a flow coexists with a
variable number of cross flows at each bottleneck link. As
shown in Fig.12 in Section VII, in the typical multi-tier
datacenter topology, the cross-rack flows f0, f1 and f2 traverse
multiple bottlenecks, which are shared with other cross flows.
Unfortunately, since the receiver-driven transport protocol only
generates one grant corresponding to each arrival packet at
the receiver, such conservative receiver-driven transmission
easily leads to low link utilization. Specifically, when a flow
reduces its sending rate due to the flow competition at the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

most congested bottleneck, the receiver-driven cross flows at
the other bottlenecks are not able to get more grants to trigger
more data packets to utilize the released bandwidth.

Under-

utilized

f1

f2

 f3
 f0

(a) Multi-bottleneck topology

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s）

0
2
4
6
8

10

Time (ms)
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

(b) Throughput of pHost

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s）

0
2
4
6
8

10

Time (ms)
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

(c) Throughput of Homa

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s）

0
2
4
6
8

10

Time (ms)
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

(d) Throughput of ExpressPass
Fig. 1. Throughput loss for different receiver-driven transport protocols in
the Multi-bottleneck topology.

We conduct NS2 simulation to illustrate the under-
utilization problem under the multi-bottleneck scenario as
shown in Fig. 1 (a). Four receiver-driven pHost flows f0, f1,
f2 and f3 share two bottleneck links with respective senders
and receivers. The bottleneck link has the rate of 10Gbps and
the round trip propagation delay is 40µs. The switch buffer
size is 128 packets.

Fig.1 (b) shows the throughput loss of pHost. At the
beginning, we assume that f0 and f1 fairly share the 1st
bottleneck link (from the left) without queueing buildup after
experiencing congestion. The total number of their flighting
data packets is worth of a bandwidth-delay product (BDP).
Once a packet arrives at the receiver, a corresponding grant is
generated and sent to the related sender to trigger a new data
packet. At 1ms, f2 starts at the line rate of 10Gbps, which is
twice the rate of f0. Consequently, f0 experiences congestion
at the 2nd bottleneck, and the sending rate of f0 decreases
to 3.3Gbps due to the bandwidth competing with f2. While
f1 still triggers the new packets according to the arrival rate
of packets at the receiver. Thus, the link utilization of the
1st bottleneck link drops to 83.3% because f1 is not able to
increase its sending rate to grab the spare bandwidth released
by f0. Similarly, at 2.5ms, the sending rate of f0 decreases
again due to the starting of f3, resulting in the link utilization
of the 1st bottleneck link is reduced to only about 66%.

Fig.1 (c) shows the throughput loss issue of Homa. Unlike
pHost, Homa transmits the short flows at the high priority.
At 1ms, f2 is transmitted at the line rate with the highest
priority. Even though there is 50% available link utilization
released by f0 at the 1st bottleneck link, f1 cannot seize the
spare bandwidth because it conservatively drives new packets
according to the packet arrival rate at the receiver. At 2.5ms,
Homa prioritizes the shortest flow f3 to fully use the 2nd
bottleneck link through the highest priority queue. Once f3 is
finished, f2 is transmitted at the highest priority again.

We further add the result of ExpressPass, which is a
receiver-driven transport protocol that can work with multi-
bottlenecked topology. ExpressPass can saturate the bottleneck
link by shaping the flow of credit packets at the switches, but
the sender should wait for credits to start data transmission
in the first RTT, resulting in bandwidth wastage. As shown
in Fig.1 (d), ExpressPass performs better than pHost due to
rate-limiting credits at switches. After f2 and f3 start, the
flow f1 can increase the sending rate to utilize the available
bandwidth released by the flow f0, which competes bandwidth
with f2 and f3 at the other bottleneck link. However, since
the new flows f2 and f3 need to wait one-RTT for credits to
start transmission even though the network is under-utilized,
resulting in a waste of bandwidth.

In datacenter networks, a destination usually connects with
multiple sources. If a receiver only sends grants to one sender
at a time, like pHost [9], the bottleneck link bandwidth
will be wasted with unresponsive senders, resulting in poor
network utilization especially under highly dynamic traffic
scenario. To improve link utilization in this case, Homa [8]
employs the overcommitment mechanism to allow a receiver
grants multiple senders simultaneously. Consequently, even
though some senders are not able to respond immediately
to the grants, the link bandwidth is also effectively utilized
by other active senders. However, this solution is hard to
directly address the under-utilization problem in the multi-
bottleneck and dynamic traffic scenarios because that, when
some flows release bandwidth, the other coexisting flows can
not proactively get more grants to trigger more data packets to
utilize the free bandwidth. What’s worse, as we show in our
evaluation in Section VIII-D, the overcommitment mechanism
easily causes queueing buildup under the highly dynamic
workloads, leading to poor latency performance.

B. Link Under-utilization in Dynamic Traffic Scenario

Due to the continuous and instantaneous changing of traffic
behavior, the highly dynamic is an intrinsic feature of data cen-
ter network [41], [42], [43]. Recent data center traffic studies
show that traffic fluctuates frequently over time and space [30],
[31], [32]. Specifically, flows arrive and leave randomly in
nature and most of them are short-lived, lasting less than 0.1s.
For example, in the popular partition/aggregate communication
pattern, a large number of flows are generated concurrently
to exchange data among servers, incurring bursty transient
traffic [2], [11]. Consider a dynamic traffic scenario in which
multiple receiver-driven flows with different source/destination
pairs share a bottleneck, limited by the conservative congestion
control, even if some of flows complete and release the bot-
tleneck bandwidth, the remaining flows are unable to actively
increase sending rate to saturate the bottleneck link.

We use another NS2 simulation test to show the under-
utilization issue in the dynamic traffic scenario. The simulation
settings are the same as that in Section III-A. As shown in Fig.
2 (a), four receiver-driven pHost flows f0, f1, f2 and f3 share
a bottleneck link with respective sources and destinations.

In Fig.2 (b), at the beginning, four flows share a bottleneck
at the same rate and just make full use of the link capacity

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

f0

 f1 f2

 f3

Under-
utilized

Under-
utilized

(a) Dumbbell topology

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s）

0
1
2
3
4
5

Time (ms)
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

(b) Throughput loss

Fig. 2. Throughput loss with dynamic traffic in the Dumbbell topology.
without queueing buildup. Since the four flows have the same
priority, the throughput of pHost and Homa are the same in
this scenario. At 1.5ms, f0 is finished, and the 3 flows to the
other 3 receivers cannot use the grants corresponding to the last
packets of f0. The other 3 flows continue to drive new packets
according to the rate of received packets at the destination.
Therefore, the bottleneck link is not saturated by the remaining
3 flows, resulting in 25% reduction of link utilization. After f1
and f2 finish transmission successively, the link utilization of
the bottleneck link drops to 25% because f3 cannot increase
the sending rate by driving more packets.

f0 f1

Th
ro

ug
hp

ut
 (G

bp
s）

0

2

4

6

8

10

Time (ms)
0 0.1 0.2 0.3 0.4

Fig. 3. Throughput of pHost when congestion occurs at the last hop.

Under the dumbbell topology, multiple receiver-driven flows
with different source/destination pairs share a bottleneck,
congestion occurs at the inter-switch hop. Since these flows
to different receivers cannot share the tokens released by the
finished flows in pHost, even though some of flows complete
and release the bottleneck bandwidth, the remaining flows
are unable to actively increase sending rate to saturate the
bottleneck link.

We further add the simulation test for pHost in multiple-
to-one scenario where congestion occurs at the last hop. We
agree with the reviewer that pHost can work with in such a
topology. However, when one flow is finished, pHost needs
to wait for a timeout period (default setting to 3 RTTs) to
downgrade the corresponding sender, and then sends tokens
to other responsive senders. In the process of waiting for the
sender to be degraded, there will be a waste of bandwidth. In
this test, two flows f0 and f1 are sent to the same receiver, and
pHost employs fairness scheduling at the receiver. As shown
in Fig.3, at the beginning, the receiver-driven pHost flows f0
and f1 fairly share the bottleneck link. When f0 is finished,
the remaining flow f1 cannot immediately utilize the available
bandwidth released by f0 because f1 cannot obtain all tokens
until the sender of f0 is downgraded after three RTTs.

C. Summary

Our analysis of the under-utilization problem of receiver-
driven transmission leads us to conclude that (1) though the

receiver-driven transmission ensures low latency, the conser-
vative congestion control is not able to make full use of link
bandwidth at multiple bottlenecks, (2) since traffic is likely to
be variable over both time and space, receiver-driven flows po-
tentially waste bandwidth when flows dynamically come and
go. These conclusions motivate us to design and implement
a receiver-driven transport protocol to simultaneously achieve
low latency and high link utilization.

IV. DESIGN DETAILS

We first describe the design details of AMRT, which con-
sists of three parts: packet interval estimation and anti-ECN
marking at switches in Section IV-A, grant generation and
explicit feedback at receivers in Section IV-B, receiver-driven
transmission and rate adjustment at Senders in Section IV-C.
Then we illustrate an example for AMRT overview in Section
IV-D.

A. Packet Interval Estimation and Anti-ECN Marking at
Switches

To avoid low link utilization in the conservative receiver-
driven transmission, the straightforward approach is to mea-
sure the spare bandwidth of bottleneck link and then send it
back to senders to adjust their sending rates. Unfortunately,
it requires multiple bits to encode the congestion level infor-
mation to present how much the network is under-utilized,
unavoidably introducing large overhead [25]. AMRT employs
a simple anti-ECN marking mechanism, which uses only
one bit to explicitly carry under-utilization signal by using
available ECN bit in the IP header [12].

In our AMRT design, switches are mainly responsible
for estimating inter-packet gap and anti-ECN marking. The
switches monitor the inter-dequeue time tinv by recording the
time when packets are forwarded at egress ports, which is well
supported by modern data center switches [27]. The value of
tinv is calculated as tinv = tcurrent − tlast, where tcurrent
and tlast are the dequeue times of the current and last packets
at the egress port, respectively.

Specifically, no matter which flow the packets belong to,
when the inter-dequeue time tinv of the current and last
packets is greater than the transmission time of one packet,
the link is deemed under-utilized and the current packet is
marked by setting the Congestion Experienced (CE) code-
point bit CEcurrent to 1. Otherwise, the bottleneck link is
saturated and the value of CEcurrent is set to 0. That is,{

CEcurrent = 1 tinv ≥ MSS
C ,

CEcurrent = 0 tinv <
MSS
C ,

(1)

where C is the bottleneck link capacity and MSS is the TCP
segment size. For the packets with different sizes, we use the
default Ethernet MTU of 1500 Bytes as MSS in calculating
the packet transmission time to avoid congestion. Note that
the initial value of CE bit is set to 1 to indicate under-utilized
bottleneck link.

During the end-to-end transmission through multiple bot-
tleneck links, the sending rate of a flow is limited by the
most congested bottleneck. AMRT performs ”AND” operation

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

between the piggybacking marked value CElast from the
last switch and the value of CEcurrent at the current switch
to obtain the final marked value CEfinal. Thus, we have
CEfinal = CEcurrent & CElast.

Fig. 4 shows the anti-ECN marking operation of AMRT.
Specifically, switch 1 measures the time interval between two
continuous dequeued packets at the egress port. Two packets
are marked because the time interval satisfies Equation (1),
meaning that the bottleneck link still has free bandwidth to
transmit more packets. When the two packets arrive at switch
2, another packet from the other ingress port also arrives,
making the idle time between packets not large enough to
transmit a packet. Therefore, the 2nd packet is unmarked to
indicate there is no spare bandwidth.

//

1 1

Egress

Switch 1 Switch 2

Inter-packet gap UnmarkingAnti-ECN marking

Ingress

0 01 1

1

11 1

Fig. 4. Anti-ECN marking operation of AMRT. The dequeueing packet is
marked by setting CE code-point to 1 once the inter-packet gap exceeds the
transmission time of one packet. Otherwise, the packet is unmarked.

In the anti-ECN marking mechanism, only if all switches
mark the CE bit of one data packet as 1, the corresponding
marked grant packet will trigger two data packets. That is, for
each final marked packet, the inter-packet gap between it and
the previous packet on the bottleneck link during its end-to-
end transmission is large enough to transmit another packet
without causing queue buildup. Consequently, the sending
rate is limited by the conservative receiver-driven congestion
control and anti-ECN marking mechanism to avoid queue
buildup and achieve high link utilization simultaneously. Note
that since the marking operation is made on packet level
and is independent of the flow, the problem of bandwidth
over-allocation is avoided. Therefore, AMRT only fills the
gap between packets and will not lead to bandwidth over-
allocation.

In the AMRT’s anti-ECN marking mechanism, some flows
are likely to have more marked packets than others. Therefore,
it is difficult for AMRT to ensure fairness among flows. How-
ever, although fairness cannot be guaranteed, the first advan-
tage of marking based on packet level is that AMRT does not
need to maintain per-flow state information at switch, which
has very limited storage resources. Therefore, AMRT has good
scalability because it is not limited by the number of flows.
Furthermore, as a receiver-driven transmission mechanism, the
primary goal of AMRT is to achieve low latency, and then
improve link utilization by using anti-ECN marking. The issue
of fairness is worth studying in our future work. Moreover, the
anti-ECN marking mechanism provides explicit feedback from
the switches to help senders aggressively increase sending rate
by only employing the ECN capability on current commodity
switches, without incurring large deployment overhead.

B. Grant Generation and Explicit Feedback at Receivers

At the receiver, AMRT is designed based on the core design
of proactive congestion control. Specifically, upon arrival of
a data packet, the receiver generates a corresponding grant
packet and sends it back to the source end-host to drive a
new data packet called scheduled packet. Consequently, the
sending rate is limited by this conservative congestion control
mechanism to avoid queue buildup. Meanwhile, the receiver
uses the built-in ECN-Echo function to convey free bandwidth
information back to the sender. When an ECN-marked data
packet arrives, the receiver copies the marked CE code-point
and sets the ECN-Echo flag in the corresponding grant packet
to notify the sender of low link utilization.

Therefore, instead of relying on reactive congestion control
to reduce sending rate after congestion occurs, AMRT takes
advantage of proactive receiver-driven congestion control to
obtain ultra-low queueing delay and adopts explicit anti-ECN
marking to increase the sending rate and network utilization.

The other consideration is how AMRT handles lost packets
including data packets and grant packets. In AMRT, the
receivers are responsible for detecting the packet loss. Similar
to Homa, AMRT employs a timeout-based mechanism to
detect lost packets without traffic overhead. Specifically, when
the data packet corresponding to a grant packet including an
unmarked grant or an anti-ECN marked grant has not arrived
at the receiver within a time period (1×RTT by default),
whether it is caused by data packet loss or grant loss, the
receiver reissues a same grant packet to ask the sender to
retransmit the data packet.

C. Receiver-driven Transmission and Rate Adjustment at
Senders

At the sender, AMRT performs receiver-driven rate adjust-
ment. During startup, a new flow sends data packets at line
rate like the existing state-of-the-art receiver-driven transport
protocols such as Homa [8], pHost [9] and NDP [10] to
avoid wasting bandwidth by waiting for the grant packets
from the receiver. Then AMRT adjusts the sending rate in
a cautious yet active manner. AMRT leverages grant packets
from receivers to conservatively trigger new data packets rather
than aggressively sending data packets in reactive congestion
control. Meanwhile, AMRT reasonably increases sending rate
in response to under-utilized bottleneck link feedbacked by
anti-ECN marked packets to achieve a tradeoff between proac-
tive and reactive congestion control.

Specifically, if the sender receives an ECN-marked grant
packet, it indicates that the dequeueing time interval between
the corresponding data packet and the previous one is large
enough to transmit one data packet to fill the inter-packet
gap. In this case, AMRT adds aggressiveness to the receiver-
driven transmission by driving two packets to grab the free
bandwidth. On the contrary, if a grant packet without ECN
marking arrives at the sender, it means that the inter-packet
gap is not large enough to add a data packet ahead of the
corresponding data packet. In short, AMRT adjusts the number
of sending packets according to the anti-ECN feedback to
achieve both low latency and high network utilization.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

D. An Illustrative Example for AMRT Overview

At a high level, AMRT retains the rationale of conservative
rate control in the existing receiver-driven transmission solu-
tions when the bottleneck link is saturated, and reasonably
performs aggressive rate control when the bottleneck link
is under-utilized. By giving full play to the advantages of
proactive and reactive rate control, AMRT achieves ultra-low
latency and high link utilization simultaneously.

The key point of AMRT is using anti-ECN marked pack-
ets to explicitly carry under-utilization information to make
senders aggressively increase sending rate, while performing
conservative transmission controlled by the receiver when the
bottleneck link is saturated.

Specifically, the switches measure the inter-dequeue time
between two consecutive data packets. When the interval time
is large enough to transmit a packet (1500 Bytes by default),
the switches mark the ECN bit in the packet header without
any additional overhead. Then the receiver echoes back the
under-utilization information to the sender. Finally, the sender
increases the sending rate to improve link utilization according
to the received marking information. AMRT conservatively
transmits data driven by the receiver and aggressively increases
the sending rate to utilize the free bandwidth to obtain both
ultra-low latency and high utilization simultaneously. To show
how AMRT works, we illustrate a simple scenario with two
flows in Fig. 5.

Consider all links have same link capacity and 3 packets are
able to saturate the bottleneck link without loss of generality.
Two receiver-driven flows f1 and f2 are sent by senders S1

and S2 to receivers R1 and R2, respectively. At the switch, f1
and f2 share port 0. As shown in Fig. 5, sender S1 and S2 each
send a data packet triggered by grants from the receiver R1 and
R2 respectively. Then these two data packets pass through the
same link. However, two data packets do not make full use of
the bottleneck link. To utilize the spare bandwidth, if the inter-
dequeue time between two packets is large enough to transmit
a packet, AMRT marks the currently dequeued packet of f2
to indicate under-utilization at the bottleneck link. R2 receives
one marked data packet and copies the marking information
to the corresponding grant packet.

Once receiving the marked grant packet piggybacking
under-utilized information, S2 sends 2 data packets. S1 sends
1 data packet triggered by the unmarked grant. Thus, 3 data
packets make full use of the bottleneck link. Moreover, the
additional one data packet does not introduce queue buildup
due to the precise notification information.

Therefore, the key challenges of AMRT include: (1) mea-
surement of the inter-dequeue time to judge whether there is
spare bandwidth, (2) anti-ECN marking scheme without over-
head, (3) adjustment of sending rate to timely and accurately
grab the available bandwidth. In the following part, we present
the design details to address the above challenges.

Next, we describe the design details of AMRT, which
consists of three parts: packet interval estimation and anti-ECN
marking, grant generation and explicit feedback, receiver-
driven transmission and rate adjustment.

Senders ReceiversSwitch Switch

S1

S2 R2

R1

f1 f2

f1f1

 Data packet

Grant packet

Under-

utilized

Port 0

Flow 1 S1 R1

Flow 2 S2 R2

Marked data packet Marked grant packet

f2

Anti-ECN

marking

Inter-packet

gap

f1

f2

f2 f2

f2 f2

Trigger

two data packets

Copy marked

bit and feedback

f1 f1

f1
1

2

34

Fig. 5. An illustrative example of AMRT.

V. MODEL ANALYSIS

AMRT uses anti-ECN marking mechanism to convey link
utilization state and then notify senders of adjusting sending
rate accordingly to avoid bandwidth wastage. Compared to the
existing receiver-driven transport protocols, AMRT efficiently
achieves low latency and high network utilization simultane-
ously. Here, we construct the theoretical model to analyze the
performance gain of AMRT in link utilization.

p6 p5 p3 p2 p1p4

p3p6

n=6

case1:

k=4, tmin=2RTT

case2:

k=4, tmax=4RTT
p6 p5

Data packet Vacant position Vacant block

2
nd

RTT:

2
nd

RTT:

1
st
RTT:

Fig. 6. A simple example shows the time required for AMRT to fill up the
spare bandwidth when some packets release bandwidth.

As shown in Fig. 6, in the first round trip time (RTT)
(i.e., 1st RTT), we assume that n packets arrive at the switch
back-to-back, and the output rate matches the bottleneck link
capacity. In the next RTT (i.e., 2nd RTT), we assume that
there are k vacant positions representing the spare bandwidth
among the remaining n − k packets after some flows finish
transmission. In the case1, k vacant positions are evenly
distributed among the remaining n − k packets, there are
k

n−k (k<n) consecutive vacant positions in each vacant block.
In the case2, k vacant positions are consecutive among the
remaining n−k packets with only one vacant block. The time
required for AMRT to reach the full link utilization in case1
and case2 is minimum and maximum, respectively.

Here, we further analyze the convergence time when AMRT
fills up the spare bandwidth of bottleneck link. As shown
in Fig. 6, the bottleneck link is saturated by 6 back-to-back
packets (i.e. n=6) in the 1st RTT. We assume that 4 packets are
not sent in the 2nd RTT (i.e. k=4), leaving 4 vacant positions.
In our design AMRT, once the inter-packet gap between the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

dequeued packet and its previous dequeued packet is more than
the transmission time of one packet, the switch uses the anti-
ECN signal to notify the sender to send one more packet in
the next RTT. Specifically, in the case1, one anti-ECN marked
packet in each vacant block notifies the sender to send one
more packet in each round of RTT. Thus, 2 vacant positions
are filled after one RTT, AMRT needs the minimal time of 2
RTTs to fill up the spare bandwidth of 4 vacant positions in
2 vacant blocks. In the case2, the maximum time for AMRT
to achieve the full link utilization for 4 vacant positions in 1
vacant block is 4 RTTs.

Without loss of generality, when k vacant positions are
evenly distributed among n−k packets, there are k

n−k (k<n)
consecutive vacant positions in each of n−k vacant blocks. In
this way, d k

n−k e RTTs are required to fill k vacant positions.
Therefore, we get the minimum time tmin for AMRT to
achieve the full link capacity as

tmin = d k

n− k
e ×RTT, (2)

where RTT is the base round trip time.
Please note that if k = n, the time required for AMRT to

fill all vacant positions is k×RTT , that is, the minimum time
is equal to the maximum time.

If k spare positions are consecutive, the maximum time
tmax to fill up the available link bandwidth is

tmax = k ×RTT. (3)

In a word, AMRT is able to make full use of the bandwidth
in the time t ∈ [tmin, tmax], while the traditional receiver-
driven transport protocols are not able to fill up the free
bandwidth released by k packets. On the one hand, when
the bottleneck link is saturated, AMRT performs proactive
receiver-driven congestion control to maintain the low latency
advantage of existing conservative receiver-driven transport
protocols. On the other hand, when the bottleneck link is
under-utilized, AMRT uses anti-ECN marking mechanism to
convey under-utilized link state and then notify senders to
increase sending rate accordingly to avoid bandwidth wastage,
resulting in further reduced delay. Compared to the existing
receiver-driven transport protocols, AMRT efficiently achieves
low latency and high network utilization simultaneously.

Next, we use a simple theoretical model to quantify gain of
AMRT in link utilization and flow completion time compared
to the traditional receiver-driven protocol.

//

C

//R

Rate

T1 Time

Traditional

Receiver-driven Protocol

AMRT achieves full link utilization

(RTT Rounds)

TR0 T2_maxTi T2_mint
'
min t

'
max

Fig. 7. AMRT vs. Traditional receiver-driven protocol.

As shown in Fig. 7, we use C to denote the bottleneck
link capacity. We assume that the rate of a flow is reduced
from C to R at time TR due to network congestion. Since the
existing receiver-driven protocols conservatively trigger new
data according to the arrival rate at the receivers, the released
free bandwidth is not utilized. Therefore, the flow completion
time T1 of current receiver-driven protocols is

T1 =
S − C × TR

R
+ TR, (4)

where S is the flow size.
AMRT adjusts the sending rate based on the anti-ECN

marking at the bottleneck link. As shown in Fig. 7, the two
dot lines show the maximum and minimum gains of AMRT.
The earliest time t′min for AMRT to increase the rate from R
to C is

t′min = dC −R
R
e+ TR. (5)

The latest time t′max at which AMRT achieves the full rate
C is

t′max = C −R+ TR. (6)

After time t′ (t′ ∈ [t′min, t
′
max]), AMRT makes full use of

the bottleneck link. Then the flow size S is given by

S = C×TR+
1

2
× (R+C)× (t′−TR)+C× (T2− t′), (7)

where T2 is the flow completion time of AMRT. Then, we
obtain T2 as

T2 =
S − C × TR − 1

2 × (R+ C)× (t′ − TR)
C

+ t′. (8)

As shown in Fig. 7, for t′min and t′max, the corresponding
values of T2 are T2 min and T2 max, respectively.

Let UAMRT and UTRP respectively denote the utilization
ratios of AMRT and the traditional receiver-driven protocols
at the bottleneck link. Then we quantify the utilization gain
Ugain as

Ugain =
UAMRT

UTRP
=
T1
T2

=
S−C×TR

R + TR
S−C×TR− 1

2×(R+C)×(t′−TR)

C + t′
.

(9)
We define Ti as the ideal flow completion time without

network congestion as Ti = S
C . Then we get the gain in flow

completion time FCT gain as

FCT gain =
T1 − Ti
T2 − Ti

=
S−C×TR

R + TR − S
C

S−C×TR− 1
2×(R+C)×(t′−TR)

C + t′ − S
C

.

(10)

By substituting t′max and t′min into Equation (9) and
Equation (10), we can obtain the minimum and maximum
gains of link utilization and FCT of AMRT as shown in Fig.
8. We set the capacity of bottleneck link C to 1Gbps, the
round trip time to 100µs and the rate reduction time TR to
0. The results in Fig. 8 illustrate that AMRT significantly
outperforms the traditional receiver-driven transport protocols
even if it converges to the full rate with the largest time
tmax. Specifically, Fig. 8 (a) and (b) show that as the ratio
of R

C decreases, the utilization gain for AMRT increases

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

S=15 pkts
S=50 pkts
S=100 pkts

U A
M

RT
/U

TR
P

0

2

4

6

8

R/C
0.2 0.4 0.6 0.8 1.0

(a) Minimum utilization gain

S=15 pkts
S=50 pkts
S=100 pkts

U A
M

RT
/U

TR
P

0

2

4

6

8

R/C
0.2 0.4 0.6 0.8 1.0

(b) Maximum utilization gain

S=15 pkts
S=50 pkts
S=100 pkts

(T
1-

T i
)/

(T
2-

T i
)

0

5

10

15

20

25

TR/Ti

0.2 0.4 0.6 0.8 1.0

(c) Minimum FCT gain

S=15 pkts
S=50 pkts
S=100 pkts

(T
1-

T i
)/

(T
2-

T i
)

0

5

10

15

20

25

TR/Ti

0.2 0.4 0.6 0.8 1.0

(d) Maximum FCT gain
Fig. 8. Minimum and Maximum utilization gain and FCT gain with increasing
R
C

and TR
Ti

.

considerably. Moreover, AMRT performs better with larger
flow size. Fig. 8 (c) and (d) demonstrate that the FCT gain
of AMRT increases with the decreasing value of TR

Ti
and with

the increasing flow size S since AMRT fills up more spare
bandwidth to improve link utilization.

VI. IMPLEMENTATION

We have implemented a prototype of AMRT based on Intel
Data Plane Development Kit (DPDK) 20.11 [46], which is
a framework to accelerate packet processing by allowing the
network stack directly communicate with NIC bypassing the
OS kernel.

Port

RX

Port

RX

...

Receive Queue Transmit Queue

...

Shared Memory Pool

Multiple Rings

... Anti-ECN Marking ...

...

Port

TX

Port

TX
...

... ...

Inter-packet Gap

Packet

Pointer

Unmarking

...

Fig. 9. AMRT’s DPDK Implementation at switch.

Fig. 9 shows the structure of AMRT’s DPDK implemen-
tation at switch, which consists of receiving, forwarding and
transmitting components. Each RX/TX port has a receive and
transmit queue, and the number of these queues are configured
by rte_eth_dev_configure() function. The ports are
served by different CPU cores. Each packet arriving at the
RX port is retrieved by rte_eth_rx_burst() function
and delivered to the receive queue, which is allocated and set
up by rte_eth_rx_queue_setup() function. After that,
the packet is enqueued a logic queue corresponding to the RX
port, which is created by rte_ring_create() function
with the form of ring structure.

In the packet forwarding component, the key point of
AMRT is anti-ECN marking. The dequeueing inter-packet
gap of two consecutive packets is calculated based on
their dequeueing time obtained by rte_rdtsc() and
rte_get_timer_hz() functions. When the packet interval
exceeds the transmission time of one packet, the CE code-
point in the IP header of the subsequent dequeueing packet
is accessed by rte_pktmbuf_headroom() function and
set to 1 to indicate link under-utilization. The checksum of IP
header is processed by rte_ipv4_cksum() function.

In practice, we measure the burst gap. Specifically, we pop
the burst packets from the logic egress queue at a time. The
maximum number of burst packets is set to four in AMRT’s
implementation. If there is no interval between the burst
packets, they are dequeued in the burst manner and fully utilize
the link bandwidth. Moreover, if the logic egress queue length
is larger than one, the burst packets are marked with ECN
value of 0 at the logic ingress queue, which will not affect the
dequeueing rate. Otherwise, if the interval between the arrival
packets at the logic egress queue is larger than the transmission
time of one packet, we can only pop one packet from the logic
egress queue at a time, then the dequeued packet is marked
with ECN value of 1 and sent to TX buffer one by one. The
above operation can guarantee the maximum speed is almost
at 10Gbps.

Finally, the transmitting component calls
rte_eth_tx_buffer() function to deliver packets
from each logical queue to the corresponding TX
port’s transmit queue, which is allocated and set up by
rte_eth_tx_queue_setup() function. Since the above
DPDK processing only manipulates the packet pointers,
the real packets with rte_mbuf struct are driven from
the shared memory pool and transmitted to the network by
rte_eth_tx_burst() function.

Application

send()

rte_eth_tx_buffer_flush()

TX_Ring_Buffer

Application

receive()

rte_eth_rx_burst()

RX_Ring_Buffer

Packet Sending Pipeline Packet Receiving Pipeline

New flow

(ECT=0)

Non-new flow

(ECT=1)

start at

line rate

marking

grant

unmarking

grant

Unscheduled

Packets

2 Scheduled

Packets

1 Scheduled

Packet

NIC NIC

CE=0 CE=1

ECN-

Echo=0

ECN-

Echo=1

Rate Control

Flow Classification

Read ECN Marking

Generate Grant

scheduled，

unscheduled，
loss info

Fig. 10. AMRT’s DPDK Implementation at end-hosts.

Fig. 10 shows the architecture of AMRT’s DPDK imple-
mentation at end-hosts, which consists of packet sending and
receiving pipelines at the sender and receiver, respectively. At
the sender, applications start data transmission by calling the
send() function. For new flows, they start immediately at
line rate with bursting unscheduled packets in the first RTT.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

For other flows, the sender decides to drive 1 or 2 scheduled
packets according to the ECN-Echo value of received grant.
Then the packets are forwarded to the TX Ring buffer of
NIC by rte_eth_tx_buffer_flush() function. At the
receiver, packets are retrieved from RX Ring buffer of NIC by
rte_eth_rx_burst() function. For each received packet,
according to the value of CE code-point in IP header, a corre-
sponding grant with or without ECN-Echo flag is generated.
Then the data packet is delivered to the application by calling
the receive() function.

VII. TESTBED EVALUATION

In this section, we use a real testbed to evaluate the
feasibility and effectiveness of AMRT. In the testbed, each
server has a Intel Core Xeon(R) E5-2687W V4 CPU and 32GB
memory. The servers run Ubuntu18.04 with Linux 4.15.0-1090
kernel and are equipped with Intel 10GbE 2P X520 Network
Interface Cards (NICs). The servers acting as the four-port
DPDK switches with two Intel 10GbE 2P X520 NICs. The
round-trip propagation time is 100µs.

We firstly test whether AMRT successfully grabs the spare
bandwidth under the dynamic traffic scenario. The test topol-
ogy is same as Fig. 2 in Section III-B. Flow f0 and f1 sharing
a single bottleneck link are sent to two receivers, respectively.
We show the throughput to the bottleneck link bandwidth in
Fig. 11.

We run a test with two flows initiated at the same time.
At the beginning, f0 and f1 fairly share the bottleneck link.
Fig. 11 (a) shows the throughput of f1. When the background
flow f0 is finished at about 4.5ms, f1 adds new packets.
The added packets driven by the marked grant packets in f1
approximately take a half bandwidth of the bottleneck link
released by the completed flow f0. We show the throughput
of two flows in Fig. 11 (b). The results illustrate that the
bottleneck links are fully utilized by AMRT under the dynamic
traffic scenario.

f1 add pkt f1 data

Th
ou

gh
pu

t (
Gb

ps
)

0

2

4

6

8

10

Time (ms)
0 2 4 6 8 10

(a) Added packets in AMRT

f0 f1

Th
ou

gh
pu

t (
Gb

ps
)

0

2

4

6

8

10

Time (ms)
0 2 4 6 8 10

(b) Normalized throughput
Fig. 11. Throughput of AMRT under dynamic traffic scenario.

Next, we compare AMRT with the state-of-the-art receiver-
driven transport protocols in a multi-bottleneck scenario. We
run a test with four receiver-driven flows in the leaf-spine
topology as shown in Fig. 12. Flow f0 experiences two
bottlenecks, which are shared with f1 and f2, respectively.
In addition, f2 and f3 share a single bottleneck link.

Fig. 13 shows the throughputs of pHost, Homa, NDP and
AMRT over time. At the beginning, f0 and f1 fairly share
the bottleneck link. Fig. 13 (a) and (b) show that, when a
new flow f2 with the same destination as f0 starts at 0.1s, f2

Spine Switch

f0

f1

f2

Servers
f3

Leaf

Switches

Fig. 12. Testbed topology for multi-bottleneck scenario.

gets full link capacity in pHost and Homa due to the shortest
remaining processing time (SRPT) policy. In Fig. 13 (c), (d)
and (e), since f2 starts transmission with the link rate, f0 and
f2 share the bottleneck link with a rate ratio of about 1:2 after
flow competition.

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s)

0

2

4

6

8

10

Time (s)
0 0.2 0.4 0.6 0.8

(a) pHost

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s)

0

2

4

6

8

10

Time (s)
0 0.2 0.4 0.6 0.8

(b) Homa

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s)

0

2

4

6

8

10

Time (s)
0 0.2 0.4 0.6 0.8

(c) NDP

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s)

0

2

4

6

8

10

Time (s)
0 0.2 0.4 0.6 0.8

(d) AMRT
Fig. 13. Throughput of four receiver-driven transmission schemes under
multi-bottleneck scenario.

For pHost, to maximize network utilization at the beginning
of transmission, a few “free tokens” are assigned for per
flow to trigger new data packets without waiting any tokens
for the request to send (RTS) packet from the corresponding
destination. Moreover, when the congestion occurs at the last
hop, pHost employs a source downgrading mechanism to
prevent a receiver from sending tokens to a source that does
not respond with data packets. Specifically, if the number of
unexpired tokens exceeds a threshold, the receiver downgrades
the source and stops assigning tokens to it until the end of
a timeout period (default being 3×RTT [9]). However, if
congestion does not occur at the last hop, but in the multi-
bottleneck scenario as shown in Fig.12, it is difficult for pHost
to seize the available bandwidth.

After f2 starts, f0 releases bandwidth at the first bottleneck
link under all receiver-driven schemes. Fig. 13 (a) shows that,
the spare bandwidth released by f0 at the first bottleneck link
is wasted in pHost. The reason is that, even if the sending
rate of f0 drops, the receiver-driven flow f1 still triggers new
data packet according to the arrival rate of data packet at its
receiver. The f1 sender can not get more grants to increase
sending rate to utilize the spare bandwidth released by f0.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

After f2 finishes, due to the conservativeness of pHost, f3 is
not able to get more grants to trigger more data packets and
utilize the free bandwidth released by f2.

For Homa, there are two schemes to improve link utilization.
Firstly, to avoid under-utilization issue when some senders do
not respond to grants in many-to-one scenario, the overcom-
mitment scheme allows a receiver to grant multiple senders
simultaneously. However, for the responsive senders, since
Homa still drives new data packets based on the data arrival
rate at the receiver, the overcommitment scheme will not send
more grants to each sender to break the deterministic nature
of proactive receiver-driven transport. Secondly, if there are
multiple incoming messages at a receiver, once a grant has
been sent for the last bytes of a message, data packets for that
message may result in grants to other messages for which
grants had previously been stopped. However, if multiple
messages are sent to different receivers, even though the last
data packets of a message result in grants, which cannot be
used by the message at the another receiver to trigger new
data packets.

Specifically, the throughput of Homa is shown in Fig.13
(b). Since f1 does not go to the same receiver as other
flows, f1 cannot use the grants after the end of the flows
at other receivers. Moreover, in the one-to-one scenario, the
overcommitment mechanism does not work. Therefore, even
though the flows f0, f2 and f3 are finished, f1 still triggers
new data packets according to the arrival rate of data packets
at its receiver, without any increase in its throughput.

For NDP, flows start at line rate. If the switch queue exceeds
eight packets, the payloads of packets are trimmed. Once
every packet header or data packet arrives at the receiver, a
corresponding PULL packet is generated and added to the pull
queue, which is shared by all connections at the receiver. When
the congestion occurs at the last hop, if a flow terminates,
the PULL packets will pull more data packets for other flows.
However, when a flow experiences congestion under the multi-
bottleneck scenario, the available bandwidth released by it is
likely to be wasted, resulting in low link utilization.

Specifically, the throughput of NDP is shown in the Fig.13
(c). When f2 starts, f0 experiences congestion at the bot-
tleneck link shared with f2. Though the arrival rate of data
packets at the f0’s receiver decreases, since both the data
packets and trimmed packet headers of f0 will trigger PULL
packets, the sender of f0 still receives a bandwidth-delay
product (BDP) worth of PULL packets. Thus, the sender of f0
still keeps the line sending rate and competes bandwidth with
f1, letting f1 occupy only half of link bandwidth. However,
once f0 finishes its transmission at time 0.4s, the throughput
of f1 increases since the bandwidth competition disappears.

Fig.13 (d) shows that, after f2 finishes, AMRT is able to
flexibly grab the spare bandwidth by the anti-ECN marking
feedback mechanism. Specifically, between 0.1s and 0.3s, f1
under AMRT increases the throughput from 5Gbps to around
6.6Gbps compared with the other protocols. Similarly, after f0
finishes transmission, the rate of f1 achieves the link capacity
in AMRT. AMRT reduces the FCT of flow f1 by 31%, 30%
and 12% over pHost, Homa and NDP, respectively. These
results indicate that AMRT is able to fully utilize the spare

bandwidth in the multi-bottleneck scenario to speed up flow
transmission.

In addition, Fig. 13 (a) shows that f0 stops transmission
until f2 finished as pHost adopts the SRPT policy. In Fig.
13 (b), when the rate of f2 drops to half of the bottleneck
bandwidth at the beginning of f3, f0 gets 50% of the link
capacity due to overcommitment mechanism in Homa. There-
fore, Homa reduces the FCT of flow f0 by 28% compared
with pHost. However, since the free bandwidths released by
f0 and f2 are not utilized by f1 and f3, respectively, the link
utilization is still lower than AMRT.

VIII. SIMULATION EVALUATION

In this section, we firstly compare AMRT performance
against the state-of-the-art receiver-driven transport protocols
over a wide range of realistic datacenter workloads in the
large-scale scenarios. Then we test AMRT performance in
many-to-many communication and bursty scenarios.

A. Performance under Realistic Workloads

We perform NS2 simulations to evaluate AMRT perfor-
mance on a large-scale network topology with varying work-
loads under the typical datacenter scenarios. We measure the
flow completion time (FCT), 99th percentile FCT and link
utilization of AMRT, pHost, Homa and NDP.

Simulator: For pHost, Homa and NDP, we implement their
transmission mechanisms in NS2 simulator according to the
descriptions in [9], [8] and [10], respectively. pHost employs
fair scheduling at the end-hosts. Each flow is assigned a BDP
worth of free tokens. The sender is downgraded for 3 RTTs
when the number of unexpired tokens exceeds a BDP worth
of ones. Homa employs the shortest remaining processing
time policy and 8 priority queues. We implement the timeout-
based loss recovery for Homa instead of assuming infinite
switch buffer. For ExpressPass, we use the corresponding
open source code with NS2 simulator [47]. For all the above
schemes, we use the default parameters and configuration
options recommended in the related papers and simulators
provided by the authors.

Network Topology: We use a common leaf-spine topology
with 10 top-of-rack (ToR) switches, 8 core switches and 400
end-hosts. Each leaf switch connects to 40 hosts with 100Gbps
links. Each network link delay is set to 4µs [45]. The switch
buffer size is set to 128 packets. We employ Equal Cost Multi
Path (ECMP) mechanism to support multipath routing.

TABLE I
FLOW SIZE DISTRIBUTIONS OF REALISTIC WORKLOADS.

Web
Server
(WSv)

Cache
Follower

(CF)

Hadoop
Cluster
(HC)

Web
Search
(WSc)

Data
Mining
(DM)

0-10KB (S) 63% 50% 60% 49% 78%
10KB-100KB (M) 18% 3% 10% 3% 5%
100KB-1MB (L) 19% 18% 20% 18% 8%
>1MB (XL) 0% 29% 10% 20% 9%

Average flow size 64KB 701KB 1.05MB 1.6MB 7.41MB

Traffic workloads: We use five workloads with the same
distributions as the realistic ones, including Web Server

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

(WSv), Cache Follower (CF), Hadoop Cluster (HC), Web
Search (WSc) and Data Mining (DM) [8], [9], [11], which
cover a wide range of average flow sizes from 64KB to
7.41MB and more than half of flows are less than 10KB. Table
1 shows the flow size distributions of five realistic workloads.
We generate the traffic between randomly selected source and
destination hosts. The flow arrival follows a Poisson process
and the traffic load varies from 0.1 to 0.7.

pHostAvg
pHost99th

ExPsAvg
ExPs99th

HomaAvg
Homa99th

NDPAvg
NDP99th

AMRTAvg
AMRT99th

FC
T

(m
s)

10−1

1

101

102

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Web Server

pHostAvg
pHost99th

ExPsAvg
ExPs99th

HomaAvg
Homa99th

NDPAvg
NDP99th

AMRTAvg
AMRT99th

FC
T

(m
s)

10−1

1

101

102

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) Cache Follower

pHostAvg
pHost99th

ExPsAvg
ExPs99th

HomaAvg
Homa99th

NDPAvg
NDP99th

AMRTAvg
AMRT99th

FC
T

(m
s)

10−1

1

101

102

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) Hadoop Cluster

pHostAvg
pHost99th

ExPsAvg
ExPs99th

HomaAvg
Homa99th

NDPAvg
NDP99th

AMRTAvg
AMRT99th

FC
T

(m
s)

10−1

1

101

102

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(d) Web Search

pHostAvg
pHost99th

ExPsAvg
ExPs99th

HomaAvg
Homa99th

NDPAvg
NDP99th

AMRTAvg
AMRT99th

FC
T

(m
s)

10−1

1

101

102

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(e) Data Mining

Fig. 14. The average FCT and 99th percentile FCT of all flows for five
different receiver-driven transport protocols with increasing load under five
realistic workloads. ExPs stands for ExpressPass.

Fig. 14 shows the flow completion time of all flows with

varying load from 0.1 to 0.7. The bottom and upper bar
indicate the average and 99th percentile FCT, respectively.
AMRT performs better than the other protocols across all
workloads, because it is able to timely grab the spare band-
width through anti-ECN marking feedback. Among the five
workloads, AMRT obtains the largest gain in Data Mining
scenario. The reason is that more large flows experience multi-
ple bottlenecks and are affected by dynamic traffic, potentially
resulting in more opportunities for AMRT to fill up the spare
bandwidth. Specifically, in Data Mining, AMRT reduces the
AFCT and 99th percentile FCT by 42%, 35%, 28%, 19% and
43%, 36%, 32%, 23% at 0.7 load over pHost, ExpressPass,
Homa and NDP, respectively. Moreover, as the load increases,
the higher network dynamic provides more chances for AMRT
to seize the spare bandwidth. For example, when the Web
Search load increases from 0.1 to 0.7, AMRT improves the
average FCT from 31% to 49%, and the 99th percentile FCT
from 38% to 56% compared to pHost.

pHost
ExpressPass

Homa
NDP

AMRT

CF CF CF CF CFW
Sv

W
Sv

W
Sv

W
Sv

W
Sv

H
C

H
C

H
C

H
C

H
C

W
Sc

W
Sc

W
Sc

W
Sc

D
M

D
M

D
M

D
M

D
M

W
Sc

Ut
ili

za
tio

n
(%

)

0

20

40

60

80

100

The number of flows
1000 2000 3000 4000 5000

Fig. 15. The bottleneck utilizations of five different receiver-driven transport
protocols with varying number of flows under five realistic workloads.
Specifically, WSv, CF, HC, WSc and DM stand for Web Server, Cache
Follower, Hadoop Cluster, Web Search and Data Mining, respectively.

We also measure the bottleneck link utilization with in-
creasing number of flows. As shown in Fig. 15, AMRT sig-
nificantly outperforms the other receiver-driven mechanisms,
because AMRT increases sending rates once detecting the
spare bandwidth and thus achieves high rate close to the
link capacity in a bounded time period. Specifically, AMRT
improves link utilization by 38%, 28%, 22% and 11% in Data
Mining workload with 5000 flows over pHost, ExpressPass,
Homa and NDP, respectively.

NDP also obtains high link utilization because in addition
to pacing pull packets at the link rate of receiver side, it trims
payloads for the packets when queue length becomes large
and retransmits them to recover the sending rate after the
congestion is alleviated. Compared with pHost, Homa per-
forms better because it uses the overcommitment mechanism
to improve link utilization for the scenario that the senders do
not respond to the receivers. However, these protocols are hard
to make good use of the free bandwidth in the multi-bottleneck
or dynamic traffic scenarios.

B. Performance under Non-oversubscribed Topology

We further conduct simulation under non-oversubscribed
topology, which contains 10 ToR switches, 8 core switches
and 80 end-hosts. Each leaf switch connects to 8 hosts with

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

100Gbps links. The other simulation settings are same as that
in the oversubscribed topology in Section VIII-A.

pHost
NDP

ExPs
AMRT

Homa

FC
T

(m
s)

0

0.1

0.2

0.3

0.4

0.5

Workloads
WSv CF HC WSc DM

(a) The average FCT

pHost
NDP

ExPs
AMRT

Homa

FC
T

(m
s)

10−1

1

101

102

Workloads
WSv CF HC WSc DM

(b) The 99th-ile FCT
Fig. 16. FCT for realistic workloads under non-oversubscribe topology.

Fig.16 shows the average and 99th-ile FCT for five realistic
workloads. Because congestion only occurs at the last hop,
the flows to the same receiver can share grants in all receiver-
driven mechanisms. Specifically, once some flows are finished,
the other remaining flows can obtain more grants to drive
more data packets, making the bottleneck link of the last
hop fully utilized. There are also some differences between
these receiver-driven mechanisms. For ExpressPass, new flows
should wait for credits to start sending packets in the first RTT
even though the bottleneck link is under-utilized. For pHost,
Homa, NDP and AMRT, they start flows at line rate to make
good use of link bandwidth. Homa transmits short flows at
the highest priority to achieve low FCT. For pHost, the sender
that does not respond with data packets is downgraded once
the number of unexpired tokens exceeds a threshold. In brief,
as shown in Fig.16 (a) and (b), the AFCT and tail FCT of the
these receiver-driven mechanisms have little difference under
different workloads.

C. Performance under Fat-tree Topology

Next, we evaluate the effectiveness of AMRT under 12-pod
Fat-tree topology. Each pod consists of 6 edge switches, 6
aggregation switches and 84 end-hosts connected. There are
36 parallel paths between any pair of edge switches across
pods. The other simulation settings are same as that in Section
VIII-A.

pHost
NDP

ExPs
AMRT

Homa

FC
T

(m
s)

0

0.2

0.4

0.6

Load
0.4 0.5 0.6 0.7 0.8

(a) The average FCT

pHost
NDP

ExPs
AMRT

Homa

FC
T

(m
s)

0

5

10

15

20

Load
0.4 0.5 0.6 0.7 0.8

(b) The 99th-ile FCT
Fig. 17. FCT for Web Search under Fat-tree topology.

Fig. 17 (a) and Fig. 17 (b) show the average and 99th per-
centile FCT for Web Search workload under Fat-tree topology,
respectively. In this heavy-tailed workload, around 49% of
tiny flows less than 10KB and about 20% long flows larger
than 1MB cause multi-bottleneck congestion in the fabric.
The experimental results show that AMRT outperforms the
other receiver-driven schemes and achieves the lowest FCT.
The reason is that AMRT can effectively seize the available

bandwidth under the dynamic traffic scenarios by actively
increasing the sending rate based on the anti-ECN marking. At
0.8 traffic load, compared with pHost, ExpressPass, Homa and
NDP, AMRT reduces average FCT and 99th-ile FCT by up to
35%, 32%, 25%,21% and 42%, 39%, 34%, 29%, respectively.

D. Performance in Many-to-many Communications

In many-to-many communication scenario, a source usually
establishes multiple connections with multiple destinations at
the same time. Similarly, a destination usually connects with
multiple sources. If a receiver only sends grants to one sender
at a time, the bottleneck link bandwidth will be wasted with
unresponsive senders, resulting in poor network utilization.

In AMRT, even if some senders do not respond, the other
senders leverage the explicit utilization feedback to increase
sending rates to utilize the spare bandwidth without queueing
buildup. In this section, we conduct experiment to show
that AMRT outperforms the other protocols in many-to-many
communication scenarios.

We generate many-to-many communication pattern in a
leaf-spine topology with 3 leaf switches to compare AMRT
with Homa’s overcommitment mechanism. Each of the first
two leaf switches connects with 20 senders, and each sender
respectively establishes 2 connections with 2 receivers un-
der the third leaf switch. The other simulation settings are
same as that in Section VIII-A. We measure the bottleneck
link utilization and maximum queue length with increasing
responsive ratio of the senders from 0.1 to 1. In this test, we
change the degree of overcommitment in Homa from 2 to 8. In
AMRT, each receiver sends grants to the corresponding sender
according to the received data packets. We repeated the test
50 times to get the average results.

Homa (d=2)
Homa (d=4)
Homa (d=6)

Homa (d=8)
NDP
AMRT

Ut
ili

za
tio

n
(%

)

0

20

40

60

80

100

Responsive ratio of senders
0.2 0.4 0.6 0.8 1.0

(a) Bottleneck utilization

Homa (d=2)
Homa (d=4)
Homa (d=6)

Homa (d=8)
NDP
AMRT

Q
ue

ue
 le

ng
th

 (p
kt

)

0

50

100

150

200

Responsive ratio of senders
0.2 0.4 0.6 0.8 1.0

(b) Maximum queue length
Fig. 18. The bottleneck link utilization and the queueing buildups with
increasing ratio of responsive senders.

Fig. 18 shows the bottleneck link utilization and maximum
queue length with varying responsive ratios of senders. As
shown in Fig. 18 (a), compared with Homa, AMRT keeps
higher link utilization since it flexibly adjusts the sending
rate according to the network state. The key difference is that
AMRT only increases the sending rate to match the target rate
when the bottleneck link is under-utilized. On the contrary,
Homa increases the degree of overcommitment to reduce the
likelihood of wasted bandwidth at the cost of consuming more
buffer space, causing larger queueing delay. As shown in Fig.
18 (b), when the response ratio of senders is 0.5 and the degree
of overcommitment is set to 8, the average link utilization in

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

Homa is improved almost by 32% compared with degree of 2,
but the average queue length also increases by about 4 times.

In brief, it is hard for Homa to achieve high link utilization
and low queueing delay simultaneously by using a fixed degree
of overcommitment under highly dynamic traffic scenario.
AMRT provides high link utilization by reasonably adjusting
the sending rate according to the anti-ECN feedback from the
bottleneck link and guarantees low latency via conservative
receiver-driven transmission.

E. Performance Compared to Switch-centric Solutions

Unlike the switch-centric solutions [24], [25], [48], AMRT
is a receiver-driven transport protocol, which conservatively
triggers new data packets according to the data arrival rate
at the receiver. Specifically, when a data packet arrives at
the receiver, a corresponding grant packet is generated and
returned to the sender to trigger one new data packet. To
improve link utilization due to the conservativeness of the
receiver-driven transmission, AMRT uses anti-ECN marked
packets to notify the sender of link under-utilization and cor-
respondingly increases sending rate to grab spare bandwidth.
Specifically, when the time interval between two consecutive
packets is greater than the transmission time of one packet, the
switch marks the ECN bit of the dequeued packet. Then the
corresponding marked grant will be generated at the receiver
to trigger two data packets. For RCP [48], each router assigns
a specific rate to all flows that pass through it. In this way,
RCP helps the flows to finish faster than XCP [25], which
returns the congestion information carried in packets header
back to the senders to increase or decrease window size. Thus,
we added the results of RCP compared with ExpressPass and
AMRT in the oversubscribed topology as same in Section
VIII-A.

ExPsAvg
ExPs99th

RCPAvg

RCP99th

AMRTAvg
AMRT99th

FC
T

(m
s)

10−3

10−2

10−1

1

101

Web
Server

Cache
Follower

Data
Mining

(a) 0 - 10KB (S)

ExPsAvg
ExPs99th

RCPAvg

RCP99th

AMRTAvg
AMRT99th

FC
T

(m
s)

10−2

10−1

1

101

Web
Server

Cache
Follower

Data
Mining

(b) 10KB - 100KB (M)

ExPsAvg
ExPs99th

RCPAvg

RCP99th

AMRTAvg
AMRT99th

FC
T

(m
s)

10−1

1

101

102

Web
Server

Cache
Follower

Data
Mining

(c) 100KB - 1MB (L)

ExPsAvg
ExPs99th

RCPAvg

RCP99th

AMRTAvg
AMRT99th

FC
T

(m
s)

10−1

1

101

102

Cache
Follower

Data
Mining

(d) 1MB - (XL)
Fig. 19. The average and 99th-ile FCT for realistic workloads (load 0.6).

Fig.19 shows the average and 99th-ile FCT across three
realistic workloads for a target load of 0.6. As shown in
Table 1, S, M, L, and XL represent flows with sizes of
0-10KB, 10KB-100KB, 100KB-1MB and larger than 1MB,
respectively. AMRT performs better than ExpressPass and
RCP across workloads, because they achieve low latency

by conservative receiver-driven transmission and high link
utilization by anti-ECN marking. Since RCP assigns the same
rate for a new flow as existing flows, ExpressPass performs
better than RCP for short flows due to low queueing delay and
ramp up time. In contrast, ExpressPass performs worse than
RCP for long flows due to lower link utilization caused by
more credit waste. In brief, AMRT reduces the average FCT
by up to 82% and 68% compared to RCP for S and M flows,
respectively, and the gap is larger at 99th-ile FCT. For L and
XL size flows, AMRT reduces the average FCT by up to 63%
and 42% compared to ExpressPass. Since all flows are less
than 1MB in Web Server workload, the FCT of Web Server
workload is not presented in Fig. 19 (d) where the flow size
is larger than 1MB.

F. Performance of Fairness

We conduct a test under multiple bottleneck scenario with
different RTTs as shown in Fig. 20 (a). The bottleneck link
capacity is 10Gbps, and the base round trip propagation delay
is 40µs. The switch buffer size is set to twice bandwidth-
delay product (BDP). We vary the number of flows from 2 to
32, which share with the flow f0 at the second bottleneck link
from the left. Fig. 20 (b) shows the Jain’s fairness index, which
is calculated by using the throughputs of f0 and f1 at every
100ms interval and taking the average value. The throughput
of f0 decreases as the number of flows passing through the
second bottleneck increases, resulting in more free bandwidth
and lower link utilization at the first bottleneck. AMRT marks
the data packets for f0 and f1 to drive more packets and
increase link utilization. However, since f0 and f1 have
different RTTs, the number of marked packets is proportional
to the rate of flows, resulting in much more marked data
packets for f1 than that for f0. Therefore, although f0 and f1
make full use of the link bandwidth, f1 grabs more bandwidth
than f0 at the first bottleneck, leading to unfairness. As the
number of concurrent flows increases, the fairness of AMRT
drops. Since pHost cannot actively increase sending rate, the
fairness is also decreased with the increase of concurrent flows.
ExpressPass achieves better fairness due to credit feedback
loop.

Under-

utilized

f1

f2

 fn
 f0

(a) Multi-bottleneck scenario

pHost
ExpressPass
AMRTFa

irn
es

s
in

de
x

0

0.2

0.4

0.6

0.8

1.0

Concurrent flows
0 2 4 8 16 32

(b) Fairness index
Fig. 20. Fairness under multiple bottlenecks scenario.

If the flow rates are different at the under-utilized bottle-
neck link, more marked packets for high-speed flows cause
unfairness. In the above multiple bottlenecks scenario, to make
full use of the available bandwidth as soon as possible, it is
reasonable to mark more data packets for high-speed flow to
trigger more new data packets. Because even if AMRT marks
the flows f0 and f1 fairly, the packets from f0 cannot grab the
free bandwidth in time due to congestion at other bottlenecks.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

However, if the flows sharing the bottleneck link have the
same destination, we can utilize the flow information collected
by the receiver to control the number of marked packets for
each flow to improve fairness. Next, we run a test with five
flows from independent senders to a same receiver over a
single bottleneck. When the bottleneck link is under-utilized,
AMRT reassign marked packets fairly for each flow at the
receiver.

pHost

Th
ro

ug
hp

ut
 (G

bp
s)

0

2

4

6

8

10

Time (s)
0 1 2 3 4 5 6 7 8 9 10

(a) Throughput of pHost

AMRT

Th
ro

ug
hp

ut
 (G

bp
s)

0

2

4

6

8

10

Time (s)
0 1 2 3 4 5 6 7 8 9 10

(b) Throughput of AMRT
Fig. 21. Fairness under dynamic traffic scenario.

Fig. 21 shows the throughput of each flow averaged over
20ms. When multiple flows compete for the bottleneck link
bandwidth with the same RTT from 1s to 7s, pHost and AMRT
achieve good per-flow fairness performance. In Fig. 21 (a),
since pHost cannot seize the available bandwidth released by
the finished flows from other receivers, the throughput loss
happens from 7s to 10s. In Fig. 21 (b), AMRT can effectively
utilize the spare bandwidth by increasing data packets driven
by each marked grant. Since each flow has almost the same
marked packets controlled at the receiver, AMRT also achieves
good fairness in seizing the spare bandwidth.

IX. CONCLUSION

We bring the explicit feedback into the proactive congestion
control of receiver-driven transport protocol, called as AMRT,
which uses anti-ECN marking feedback to indicate under-
utilized link and notifies the sender to fill up the spare band-
width without introducing traffic overhead. The test results
of real testbed and large-scale NS2 simulations show that
AMRT significantly outperforms pHost, ExpressPass, Homa
and NDP by 38%, 28%, 22% and 11% respectively in terms
of link utilization. AMRT effectively reduces the AFCT by
up to 42% compared with the state-of-the-art receiver-driven
transport protocols.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (62132022, 62102046, 61872387,
61872403), the Natural Science Foundation of Hunan Province
(2021JJ30867, 2022JJ30618), Key Research and Development
Program of Hunan (2022WK2005), Science and Technology
on Parallel and Distributed Processing Laboratory(PDL) Foun-
dation under Grant (6142110200406).

REFERENCES

[1] J. Hu, J. Huang, Z. Li, J. Wang and T. He, ”AMRT: Anti-ECN Marking
to Improve Utilization of Receiver-driven Transmission in Data Center,”
in Proc. ACM ICPP, 2020.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In Proc.
ACM SIGCOMM, 2010.

[3] Lisheng M, Wei S, et al. Joint Emergency Data and Service Evacuation in
Cloud Data Centers Against Early Warning Disasters. IEEE Transactions
on Network and Service Management, 2022, vol.19, no. 2, pp. 1306-1320.

[4] Feng H, Deng Y, Zhou Y, et al. Towards Heat-Recirculation-Aware Virtual
Machine Placement in Data Centers[J]. IEEE Transactions on Network
and Service Management, 2021, vol.19, no. 1, pp. 256-270.

[5] Feng H, Deng Y, Qin X, et al. Criso: An Incremental Scalable and Cost-
Effective Network Architecture for Data Centers[J]. IEEE Transactions on
Network and Service Management, 2020, vol.18, no. 2, pp. 2016-2029.

[6] Iqbal W, Berral J L, Erradi A, et al. Adaptive prediction models for data
center resources utilization estimation[J]. IEEE Transactions on Network
and Service Management, 2019, vol.16, no. 4, pp. 1681-1693.

[7] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. PIAS: Practical
Information-Agnostic Flow Scheduling for Commodity Data Centers.
IEEE/ACM Transactions on Networking, vol. 25, no. 4, pp. 1954-1967,
2017.

[8] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A Receiver-
driven Low-latency Transport Protocol Using Network Priorities. In Proc.
ACM SIGCOMM, 2018.

[9] P. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker.
phost: Distributed Near-optimal Datacenter Transport over Commodity
Network Fabric. In Proc. ACM CoNEXT 2015.

[10] M. Handley, C. Raiciu, A. Agache, A.Voinescu, A. Moore, G. Antichi,
and M. Wójcik. Re-architecting Datacenter Networks and Stacks for Low
Latency and High Performance. In Proc. ACM SIGCOMM, 2017.

[11] I. Cho, K. Jang, and D. Han. Credit-scheduled Delay-bounded Conges-
tion Control for Datacenters. In Proc. ACM SIGCOMM, 2017.

[12] S. S. Kunniyur. AntiECN Marking: A Marking Scheme for High
Bandwidth Delay Connections. In Proc. IEEE ICC, 2003.

[13] W. Bai, L. Chen, K. Chen, and H. Wu. Enabling ECN in Multi-Service
Multi-Queue Data Centers. In Proc. USENIX NSDI, 2016.

[14] W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu. Enabling ECN over
Generic Packet Scheduling. In Proc. ACM CoNEXT, 2016.

[15] J. Zhang, W. Bai, and K. Chen. Enabling ECN for Datacenter Networks
with RTT Variations. In Proc. ACM CoNEXT, 2019.

[16] G. Zeng, W. Bai, G. Chen, K. Chen, D. Han, and Y. Zhu. Combining
ECN and RTT for Datacenter Transport. In Proc. ACM APNet, 2017.

[17] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware Datacenter
TCP (D2TCP). In Proc. ACM SIGCOMM, 2012.

[18] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang. Congestion Control for Large-
scale RDMA Deployments. In Proc. ACM SIGCOMM, 2015.

[19] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. Timely: RTT-based
Congestion Control for the Datacenter. In Proc. ACM SIGCOMM, 2015.

[20] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. Information-
Agnostic Flow Scheduling for Commodity Data Centers. In Proc.
USENIX NSDI, 2015.

[21] L. Chen, J. Lingys, K. Chen, and F. Liu. AuTO: Scaling Deep Rein-
forcement Learning for Datacenter-Scale Automatic Traffic Optimization.
In Proc. ACM SIGCOMM, 2018.

[22] Z. Li, W. Bai, K. Chen, D. Han, Y. Zhang, D. Li, and H. Yu. Rate-Aware
Flow Scheduling for Commodity Data Center Networks. In Proc. IEEE
INFOCOM, 2017.

[23] L. Chen, K. Chen, W. Bai, and M. Alizadeh. Scheduling Mix-flows in
Commodity Datacenters with Karuna. In Proc. ACM SIGCOMM, 2016.

[24] J. Zhang, F. Ren, R. Shu, and P. Cheng. TFC: Token Flow Control in
Data Center Networks. In Proc. ACM EuroSys, 2016.

[25] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-delay Product Networks. In Proc. ACM SIGCOMM, 2002.

[26] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One More Bit
Is Enough. In Proc. ACM SIGCOMM, 2005.

[27] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M.
Zhang, F. Kelly, M. Alizadeh, M. Yu. HPCC: High Precision Congestion
Control. In Proc. ACM SIGCOMM, 2019.

[28] J. Hu, J. Huang, Z. Li, Y. Li, W. Jiang, K. Chen, J. Wang and
T. He, ”RPO: Receiver-driven Transport Protocol Using Opportunistic
Transmission in Data Center,” in Proc. IEEE ICNP, 2021.

[29] S. Hu, W. Bai, B. Qiao, K. Chen, and K. Tan. Augmenting Proactive
Congestion Control with Aeolus. In Proc. ACM APNet, 2018.

[30] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken. The Nature
of Data Center Traffic: Measurements & Analysis. In Proc. ACM IMC,
2009.

[31] T. Benson, A. Akella, and D. Maltz. Network Traffic Characteristics of
Data Centers in the Wild. In Proc. IMC, 2010.

[32] A. Roy, H. Zeng, J. Bagga, G. Porter, A. C. Snoeren. Inside the Social
Network’s (Datacenter) Network. In Proc. ACM SIGCOMM, 2015.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

[33] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data
Center Network Architecture. In SIGCOMM, 2008.

[34] A. Greenberg et al. VL2: a scalable and flexible data center network. In
SIGCOMM, 2009.

[35] P. Cheng, F. Ren, R. Shu, and C. Lin. Catch the Whole Lot in an Action:
Rapid Precise Packet Loss Notification in Data Centers. In Proc. USENIX
NSDI, 2014.

[36] J. Xia, G. Zeng, J. Zhang, W. Wang, W. Bai, J. Jiang, K. Chen.
Rethinking Transport Layer Design for Distributed Machine Learning.
In Proc. ACM APNet 2019.

[37] H. Zhu, D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and M. Erez.
Kelp: QoS for Accelerators in Machine Learning Platforms. In Proc. IEEE
HPCA, 2019.

[38] A. Eker, B. Williams, K. Chiu, and D. Ponomarev. Controlled Asyn-
chronous GVT: Accelerating Parallel Discrete Event Simulation on Many-
core Clusters. In Proc. ACM ICPP, 2019.

[39] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker. pFabric: Minimal Near-optimal Datacenter Transport. In
Proc. ACM SIGCOMM, 2013.

[40] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding Data
Center Traffic Characteristics. In Proceedings of Sigcomm Workshop:
Research on Enterprise Networks, 2009.

[41] T. Wang, F. Liu, J. Guo, and H. Xu. Dynamic SDN Controller Assign-
ment in Data Center Networks: Stable Matching with Transfers. In Proc.
IEEE INFOCOM, 2016.

[42] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren. Re-architecting
Congestion Management in Lossless Ethernet. In Proc. USENIX NSDI,
2020.

[43] X. Wang, A. Tumeo, J. D. Leidel, J. Li, and Y. Chen. MAC: Memory
Access Coalescer for 3D-Stacked Memory. In Proc. ACM ICPP, 2019.

[44] J. Hu, J. Huang, J. Lv, Y. Zhou, J. Wang, and T. He. CAPS: Coding-
based Adaptive Packet Spraying to Reduce Flow Completion Time in
Data Center. IEEE/ACM Transactions on Networking, vol. 27, no. 6, pp.
2338-2353, 2019.

[45] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen, K. Tan and Y.
Wang. Aeolus: A Building Block for Proactive Transport in Datacenters.
In Proc. ACM SIGCOMM 2020.

[46] DPDK plane development kit, Intel DPDK, 2019.
[47] Expresspass simulator. https://github.com/kaist-ina/ns2-xpass.
[48] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown. Pro-

cessor Sharing Flows in the Internet. In Proc. IEEE IWQoS, 2005.

Jinbin Hu received the B.E. and M.E. degrees from
Beijing Jiao Tong University, China, in 2008 and
2011, respectively, and the PhD degree in computer
science from Central South University, China, in
2020. She is currently a Post-Doc in the Department
of Computer Science & Engineering, Hong Kong
University of Science & Technology, and working
in the School of Computer and Communication
Engineering, Changsha University of Science and
Technology, China. Her current research interests are
in the area of datacenter networks and systems.

Jiawei Huang obtained his PhD (2008) and Mas-
ters degrees (2004) from the School of Computer
Science and Engineering at Central South Univer-
sity. He also received his Bachelor’s (1999) degree
from the School of Computer Science at Hunan
University. He is now a professor in the School of
Computer Science and Engineering at Central South
University, China. His research interests include per-
formance modeling, analysis, and optimization for
wireless networks and data center networks.

Zhaoyi Li received the B.S. degree from Central
South University, China, in 2019. He is currently
pursuing the M.S. degree in the School of Computer
Science and Engineering at Central South University,
China. His research interests are in the area of data
center networks.

JianXin Wang received the B.E. and M.E. degrees
in computer engineering from Central South Univer-
sity, China, in 1992 and 1996, respectively, and the
PhD degree in computer science from Central South
University, China, in 2001. He is the chair of and a
professor in the School of Computer Science and
Engineering, Central South University, Changsha,
Hunan, P.R. China. His current research interests
include algorithm analysis and optimization, param-
eraized algorithm, Bioinformatics and computer net-
work. He is a senior member of IEEE.

Tian He received the PhD degree under Prof. John
A. Stankovic from the University of Virginia, Char-
lottesville in 2004. He is currently a professor with
the Department of Computer Science and Engineer-
ing at the University of Minnesota, Twin Cities. His
research includes wireless sensor networks, cyber-
physical systems, intelligent transportation systems,
real-time embedded systems and distributed systems,
supported by the US National Science Foundation,
IBM, Microsoft and other agencies. He is the author
and coauthor of over 200 papers in journals and

conferences with over 20,000 citations (H-Index 59). His publications have
been selected as graduate-level course materials by over 50 universities in
the United States and other countries. He has received a number of research
awards in the area of networking, including five best paper awards. He is
also the recipient of the NSF CAREER Award 2009 and McKnight Land-
Grant Professorship. He served a few program chair positions in international
conferences and on many program committees, and also currently serves
as an editorial board member for six international journals including IEEE
Transactions on Computer. He is an ACM and IEEE fellow.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3218343

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on November 11,2022 at 03:39:52 UTC from IEEE Xplore. Restrictions apply.

