
AMRT: Anti-ECN Marking to Improve Utilization of
Receiver-driven Transmission in Data Center

Jinbin Hu
Central South University

Changsha, China
jinbinhu@csu.edu.cn

Jiawei Huang
Central South University

Changsha, China
jiaweihuang@csu.edu.cn

Zhaoyi Li
Central South University

Changsha, China
lizhaoyi@csu.edu.cn

Jianxin Wang
Central South University

Changsha, China
jxwang@csu.edu.cn

Tian He
University of Minnesota
Minneapolis, MN, USA

tianhe@umn.edu

ABSTRACT
Cloud applications generate a variety of workloads ranging from
delay-sensitive flows to bandwidth-hungry ones in data centers. Ex-
isting reactive or proactive congestion control protocols are hard to
simultaneously achieve ultra-low latency and high link utilization
across all workloads in data center networks. We present a new
receiver-driven transport scheme using anti-ECN (Explicit Con-
gestion Notification) marking to achieve both near-zero queueing
delay and full link utilization by reasonably increasing sending
rate in the case of under-utilization. Specifically, switches mark the
ECN bit of data packets once detecting spare bandwidth. When
receiving the anti-ECN marked packet, the receiver generates the
corresponding marked grant to trigger more data packets. The
experimental results of small-scale testbed implementation and
large-scale NS2 simulation show that AMRT effectively reduces the
average flow completion time (AFCT) by up to 40.8% and improves
the link utilization by up to 36.8% under high workload over the
state-of-the-art receiver-driven transmission schemes.

CCS CONCEPTS
• Networks→ Data center networks; Transport protocols.

KEYWORDS
Data center, receiver-driven, link utilization

ACM Reference Format:
Jinbin Hu, Jiawei Huang, Zhaoyi Li, JianxinWang, and Tian He. 2020. AMRT:
Anti-ECN Marking to Improve Utilization of Receiver-driven Transmission
in Data Center. In 49th International Conference on Parallel Processing - ICPP
(ICPP ’20), August 17–20, 2020, Edmonton, AB, Canada. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3404397.3404412

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404412

1 INTRODUCTION
Modern data centers host diverse applications such as web search,
social networking, deep learning and data mining. With the increas-
ingly stringent demand on both low latency and high throughput
in these datacenter applications, numerous of transport protocols
are proposed to optimize the flow completion time by using reac-
tive congestion control algorithms at sender side [1–6]. Since only
reacting after congestion already happens, the sender-side trans-
port protocols inevitably induce queue buildup, which adversely
affects the performance of short or tiny flows in delay-sensitive
applications such as remote procedure calls (RPCs) [7].

In recent years, receiver-driven transport protocols such as pHost
[8], NDP [10], Homa [7] and Aeolus [11] are proposed to guarantee
near-zero queueing delay by using proactive congestion control
mechanism. These receiver-driven transport protocols conserva-
tively trigger new data packets according to the data arrival rate
at the receiver. Specifically, when a data packet arrives at the re-
ceiver, a corresponding grant packet is generated and returned to
the sender to trigger only one new data packet. Therefore, these
receiver-driven transport protocols effectively achieve ultra-low
queueing delay and significantly improve performance of delay-
sensitive application.

However, the conservative receiver-driven transport protocols
are not able to actively probe the available bandwidth and increase
sending rate even in the case of spare bandwidth. As a result, the
receiver-driven transport protocols potentially suffer from under-
utilization problem, especially in the multi-bottleneck and dynamic
traffic scenarios. (1) When a flow passes through multiple bottle-
neck links, its rate is limited by the most congested bottleneck. Due
to the conservativeness of the receiver-driven transport protocols,
when free bandwidth arises in the other bottleneck links, the co-
existing receiver-driven flows are not able to grab the available
bandwidth, leading to low link utilization. (2) Under the highly
dynamic traffic in data center, the link bandwidth is potentially
wasted in the receiver-driven transmission. When multiple flows to
different receivers share a same bottleneck link, even though some
flows finish transmission, the remaining ones are unable to fill up
the available bandwidth, further reducing the link utilization.

To improve link utilization in many-to-many communication sce-
narios, Homa uses the overcommitment mechanism to allow multi-
ple senders to simultaneously respond to a single receiver. However,

https://doi.org/10.1145/3404397.3404412
https://doi.org/10.1145/3404397.3404412

ICPP ’20, August 17–20, 2020, Canada J. Hu et al.

this solution is hard to directly address the under-utilization prob-
lem in the multi-bottleneck and dynamic traffic scenarios because
that, when some flows release bandwidth, the other coexisting flows
can not proactively get more grants to trigger more data packets to
utilize the free bandwidth. What’s worse, as we show in our evalu-
ation (Section 8.2), the overcommitment mechanism easily causes
queueing buildup under the highly dynamic workloads, leading to
poor latency performance.

Fortunately, the marking-based explicit feedback is an effec-
tive mechanism to address the above problem. We propose a new
receiver-driven transport protocol called AMRT, which uses anti-
ECN marked packets to notify the sender of link under-utilization
and correspondingly increases sending rate to grab spare band-
width. Specifically, when the time interval between two consecutive
packets is greater than the transmission time of one packet, the
switch marks the dequeued packet, whose corresponding marked
grant will be generated at the receiver to trigger more data pack-
ets. Then the receiver-driven sender increases its sending rate to
match the available bandwidth. Therefore, AMRT takes advantage
of conservative receiver-driven transmission to guarantee near-
zero queueing delay and meanwhile ensures full link utilization
with the aid of explicit anti-ECN marking.

In summary, our major contributions are:

• We conduct an extensive simulation-based study to ana-
lyze two key issues that lead to low link utilization issues
in receiver-driven transmission: (1) when one flow passes
through multiple bottleneck links, the spare bandwidth re-
leased by it at the bottlenecks other than the most congested
one can not be utilized by the other coexisting flows, (2)
when multiple flows share the same link in the dynamic
traffic scenario, if some flows finish their transmissions, the
other flows are not able to get more grants to seize the free
bandwidth. For example, as shown in Section 8, pHost, Homa
and NDP only obtain about 61%, 68% and 75% average link
utilization under the dynamic data mining workload, respec-
tively.

• We propose a new receiver-driven transport protocol AMRT,
which uses anti-ECN marking to explicitly notify the sender
of spare bandwidth at the bottleneck link. Therefore, AMRT
increases aggressiveness of conservative receiver-driven trans-
mission to guarantee ultra-low latency and high link utiliza-
tion simultaneously. Moreover, AMRT can be easily deployed
on the commercial switches using the built-in ECN function.

• By using both testbed implementation and NS2 simulations,
we demonstrate that AMRT performs remarkably better
than the state-of-the-art receiver-driven transport protocols.
AMRT reduces the average flow completion time (AFCT) by
18.3%-40.8% under heavy workload and yields up to 36.8%,
22.5% and 11.6% link utilization improvement over pHost,
Homa and NDP, respectively.

The rest of the paper is organized as following. In Section 2 and
3, we respectively describe our design motivation and overview. In
Section 4 and 5, we introduce the design details and model analysis
of AMRT, respectively. We discuss the implementation in Section
6. In Section 7 and 8, we show the testbed experimental and NS2

simulation results, respectively. In Section 9, we present the related
work and then conclude the paper in Section 10.

2 DESIGN MOTIVATION
To motivate our design, we investigate the impact of the receiver-
driven transmission scheme on link utilization in multiple bottle-
necks and dynamic traffic scenarios.

2.1 Multiple bottlenecks scenario
The multiple bottlenecks scenarios widely exist in data center net-
works [12], [13], [14]. For example, during the distributed training
process of computation-intensive machine learning, the massive
number of model parameters need to be updated synchronously by
using a large number of cross-rack flows, which traverse multiple
hops between thousands of servers at the end of each iteration
[15], [16], [17], [18]. These cross-rack flows coexist with a variable
number of cross flows at each hop, resulting in multiple bottlenecks
[19], [20].

It is common that a flow traverses multiple bottlenecks and coex-
ists with a variable number of cross flows at each bottleneck. Unfor-
tunately, the conservativeness of current receiver-driven transmis-
sion easily leads to low link utilization. Since the receiver-driven
transport protocol only generates one grant corresponding to each
arrival packet at the receiver, when a flow reduces its sending rate
due to the flow competition at the most congested bottleneck, the
receiver-driven cross flows at the other bottlenecks are not able to
get more grants to trigger more data packets to utilize the released
bandwidth.

Under-

utilized

f1

f2

 f3
 f0

(a) Multi-bottleneck topology

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s）

0
2
4
6
8

10

Time (ms)
0.1 1.0 2.0 3.0 4.0 5.0 6.0

(b) Throughput loss

Figure 1: Multiple bottlenecks.

We conduct NS2 simulation to illustrate the under-utilization
problem under the multi-bottleneck scenario as shown in Fig. 1 (a).
Four receiver-driven pHost flows f0, f1, f2 and f3 share two bottle-
neck links with respective senders and receivers. The bottleneck
link has the rate of 10Gbps and the round trip propagation delay is
100µs. The switch buffer size is 128 packets.

Fig. 1 (b) shows that, at the beginning, f0 and f1 fairly share
the 1st bottleneck link (from the left) without queue buildup. At
1ms, f2 starts at the line rate of 10Gbps. Consequently, the sending
rate of f0 decreases to 3.3Gbps due to the bandwidth competing
with f2 at the 2nd bottleneck. Thus, the link utilization of the 1st
bottleneck link drops to 83.3% because f1 is not able to increase its
sending rate to grab the spare bandwidth released by f0. Similarly,
at 3.5ms, the sending rate of f0 decreases again due to the starting
of f3. Finally, the link utilization of the 1st bottleneck link is only
about 66%.

AMRT: Anti-ECN Marking to Improve Utilization of Receiver-driven Transmission in Data Center ICPP ’20, August 17–20, 2020, Canada

2.2 Dynamic traffic scenario
Due to the continuous and instantaneous changing of traffic be-
havior, the highly dynamic is an intrinsic feature of data center
network [21], [22], [23]. Recent data center traffic studies show
that traffic fluctuates frequently over time and space [12], [13], [14].
Specifically, flows arrive and leave randomly in nature and most
of them are short-lived, lasting less than 0.1s. For example, in the
popular partition/aggregate communication pattern, a large num-
ber of flows are generated almost concurrently to exchange data
among servers, incurring bursty transient traffic [1], [9]. Consider
a dynamic traffic scenario in which multiple receiver-driven flows
with different source/destination pairs share a bottleneck, limited
by the conservative congestion control, even if some of flows com-
plete and release the bottleneck bandwidth, the remaining flows are
unable to actively increase sending rate to saturate the bottleneck
link.

Under-

utilized

 f0

 f2

 f3

 f1

(a) Dumbbell topology

f0
f1

f2
f3

Th
ro

ug
hp

ut
 (G

bp
s）

0
1
2
3
4
5

Time (ms)
0.1 1.0 2.0 3.0 4.0 5.0 6.0

(b) Throughput loss

Figure 2: Dynamic traffic.

We use another NS2 simulation test to show the under-utilization
issue in the dynamic traffic scenario. The simulation settings are
the same as that in Section 2.1. As shown in Fig. 2 (a), four receiver-
driven pHost flows f0, f1, f2 and f3 share a bottleneck link with
respective sources and destinations. Firstly, four flows share a bot-
tleneck at the same rate and just make full use of the link capacity.
However, when f0 is completed, the bottleneck link is not saturated
by the remaining three flows, resulting in 25% reduction of link
utilization. After f1 and f2 finish transmission successively, the link
utilization of the bottleneck link drops to 25% because f3 cannot
increase the sending rate by driving more packets.

2.3 Summary
Our analysis of the under-utilization problem of receiver-driven
transmission leads us to conclude that (1) though the receiver-
driven transmission ensures low latency, the conservative conges-
tion control is not able to make full use of link bandwidth at multiple
bottlenecks, (2) since traffic is likely to be variable over both time
and space, receiver-driven flows potentially waste bandwidth when
flows dynamically come and go. These conclusions motivate us
to design and implement a receiver-driven transport protocol to
simultaneously achieve low latency and high link utilization.

3 DESIGN OVERVIEW
In this section, we present an overview of AMRT. The key point of
AMRT is using anti-ECN marked packets to explicitly carry under-
utilization information to make senders aggressively increase send-
ing rate, while performing conservative transmission controlled by
the receiver when the bottleneck link is saturated.

Specifically, the switches measure the inter-dequeue time be-
tween two consecutive data packets. When the interval time is large
enough to transmit a packet (1500 Bytes by default), the switches
mark the ECN bit in the packet header without any additional
overhead. Then the receiver echoes back the under-utilization in-
formation to the sender. Finally, the sender increases the sending
rate to improve link utilization according to the received marking
information. AMRT conservatively transmits data driven by the
receiver and aggressively increases the sending rate to utilize the
free bandwidth to obtain both ultra-low latency and high utilization
simultaneously. To show how AMRT works, we illustrate a simple
scenario with two flows in Fig. 3.

Senders ReceiversSwitch Switch

S1

S2 R2

R1

f1 f2

f1f1

Data packet

Grant packet

Under-
utilized

Port 0

Flow 1 S1 R1

Flow 2 S2 R2

Marked data packet Marked grant packet

f2

Anti-ECN
marking

Inter-packet
gap

f1

f2

f2 f2

f2 f2

Trigger
two data packets

Copy marked
bit and feedback

f1 f1

f1
1

2

34

Figure 3: AMRT overview.

Consider all links have same link capacity and 3 packets are
able to saturate the bottleneck link without loss of generality. Two
receiver-driven flows f1 and f2 are sent by senders S1 and S2 to
receivers R1 and R2, respectively. At the switch, f1 and f2 share
port 0. As shown in Fig. 3, sender S1 and S2 each send a data packet
triggered by grants from the receiver R1 and R2 respectively. Then
these two data packets pass through the same link. However, two
data packets do not make full use of the bottleneck link. To utilize
the spare bandwidth, if the inter-dequeue time between two packets
is large enough to transmit a packet, AMRT marks the currently
dequeued packet of f2 to indicate under-utilization at the bottleneck
link. R2 receives one marked data packet and copies the marking
information to the corresponding grant packet.

Once receiving the marked grant packet piggybacking under-
utilized information, S2 sends 2 data packets. S1 sends 1 data packet
triggered by the unmarked grant. Thus, 3 data packets make full
use of the bottleneck link. Moreover, the additional one data packet
does not introduce queue buildup due to the precise notification
information.

Therefore, the key challenges of AMRT include: (1) measurement
of the inter-dequeue time to judgewhether there is spare bandwidth,
(2) anti-ECN marking scheme without overhead, (3) adjustment of
sending rate to timely and accurately grab the available bandwidth.
In the following part, we present the design details to address the
above challenges.

ICPP ’20, August 17–20, 2020, Canada J. Hu et al.

4 DESIGN DETAILS
In this section, we describe the design details of AMRT, which
consists of three parts: packet interval estimation and anti-ECN
marking, grant generation and explicit feedback, receiver-driven
transmission and rate adjustment.

4.1 Packet Interval Estimation and Anti-ECN
Marking

To avoid low link utilization in the conservative receiver-driven
transmission, the straightforward approach is to measure the spare
bandwidth of bottleneck link and then send it back to senders to
adjust their sending rates. Unfortunately, it requires multiple bits to
encode the congestion level information to present how much the
network is under-utilized, unavoidably introducing large overhead
[24]. AMRT employs a simple anti-ECNmarkingmechanism, which
uses only one bit to explicitly carry under-utilization signal by using
available ECN bit in the IP header [25].

In our AMRT design, switches are mainly responsible for estimat-
ing inter-packet gap and anti-ECN marking. The switches monitor
the inter-dequeue time tinv by recording the time when packets
are forwarded at egress ports, which is well supported by modern
data center switches [16]. The value of tinv is calculated as

tinv = tcurrent − tlast , (1)

where tcurrent and tlast are the dequeue times of the current and
last packets at the egress port, respectively.

If the packet’s inter-dequeue time tinv is greater than the trans-
mission time of one packet, then the link is deemed under-utilized
and the Congestion Experienced (CE) codepoint bit CEcurrent of
the arriving packet is set to 1. Otherwise, the bottleneck link is
saturated. In this case, since there is no need to add more packets,
the value of CEcurrent is set to 0. That is,{

CEcurrent = 1 tinv ≥ MSS
C ,

CEcurrent = 0 tinv <
MSS
C ,

(2)

whereC is the bottleneck link capacity andMSS is the TCP segment
size. For the packets with different sizes, we use the default Ethernet
MTU of 1500 Bytes asMSS in calculating the packet transmission
time to avoid congestion. Note that the initially value of CE bit is
set to1 to indicate under-utilized bottleneck link.

During the end-to-end transmission through multiple bottleneck
links, the sending rate of a flow is limited by the most congested bot-
tleneck. Therefore, AMRT obtains the final marked value CEf inal
of one dequeued packet as the "AND" operation result of the pig-
gybacking value CElast of the dequeued packet and the value of
CEcurrent at the current switch. Thus, we have

CEf inal = CEcurrent & CElast . (3)

Fig. 4 shows the anti-ECN marking operation of AMRT. Specifi-
cally, switch 1 measures the time interval between two continuous
dequeued packets at the egress port. Two packets are marked be-
cause the time interval satisfies Equation (2), meaning that the
bottleneck link still has free bandwidth to transmit more packets.
When the two packets arrive at switch 2, another packet from the

other ingress port also arrives, making the idle time between pack-
ets not large enough to transmit a packet. Therefore, the 2nd packet
is unmarked to indicate there is no spare bandwidth.

1 1

Egress

Switch 1 Switch 2

Inter-packet gap UnmarkingAntiECN marking

Ingress

0 01 1

1

11 1

Figure 4: Anti-ECN marking operation of AMRT.

In the anti-ECN marking mechanism, only if all switches mark
the CE bit of one data packet as 1, the corresponding marked grant
packet will trigger two data packets. Note that since the marking
operation is made on packet level and is independent of the flow, the
switches do not need to maintain per-flow state information. More-
over, the anti-ECN marking mechanism provides explicit feedback
from the switches to help senders aggressively increase sending
rate by only employing the ECN capability on current commodity
switches, without incurring large deployment overhead.

4.2 Grant Generation and Explicit Feedback
At the receiver, AMRT uses the existing receiver-driven transmis-
sion mechanism for congestion control. Specifically, upon arrival of
a data packet, the receiver generates a corresponding grant packet
and sends it back to the source end-host to drive a new data packet.
Consequently, the sending rate is limited by this conservative con-
gestion control mechanism to avoid queue buildup. Meanwhile,
the receiver uses the built-in ECN-Echo function to convey free
bandwidth information back to the sender. When an ECN-marked
data packet arrives, the receiver copies the marked CE codepoint
and sets the ECN-Echo flag in the corresponding grant packet to
notify the sender of low link utilization.

Therefore, instead of relying on reactive congestion control to
reduce sending rate after congestion occurs, AMRT takes advantage
of proactive receiver-driven congestion control to obtain ultra-low
queueing delay and adopts explicit anti-ECN marking to increase
the sending rate and network utilization.

4.3 Receiver-driven Rate Adjustment
At the sender, AMRT adjusts the sending rate in a cautious yet
active manner. AMRT leverages grant packets from receivers to
conservatively trigger new data packets rather than aggressively
sending data packets in reactive congestion control. Meanwhile,
AMRT reasonably increases sending rate in response to under-
utilization feedback at the bottleneck link to achieve a tradeoff
between proactive and reactive congestion control.

Specifically, if sender receives an ECN-marked grant packet, it
indicates that the dequeueing time interval between the correspond-
ing data packet and the previous one is large enough to transmit
one data packet to fill the inter-packet gap. In this case, AMRT
adds aggressiveness to the receiver-driven transmission by driving
two packets to grab the free bandwidth. On the contrary, if a grant
packet without ECNmarking arrives at the sender, it means that the
inter-packet gap is not large enough to add a data packet ahead of

AMRT: Anti-ECN Marking to Improve Utilization of Receiver-driven Transmission in Data Center ICPP ’20, August 17–20, 2020, Canada

the corresponding data packet. In short, AMRT adjusts the number
of sending packets according to the anti-ECN feedback to achieve
both low latency and high network utilization.

5 MODEL ANALYSIS
AMRT uses anti-ECNmarkingmechanism to convey link utilization
state and then notify senders of adjusting sending rate accordingly
to avoid bandwidth wastage. Compared to the existing receiver-
driven transport protocols, AMRT efficiently achieves low latency
and high network utilization simultaneously. Here, we construct
the theoretical model to analyze the performance gain of AMRT in
link utilization.

Assuming that n packets arrive at the switch back-to-back in one
round trip time (RTT), and the output rate matches the bottleneck
link capacity. In the next RTT, we assume that there are k vacant
positions among the remaining n−k packets after some flows finish
transmission.

p6 p5 p3 p2 p1p4

p3p6

n=6

k=4, tmin=2RTT
k=4, tmax=4RTTp6 p5

Data packet Vacant position

Figure 5: A simple example shows the time required for
AMRT to fill up the spare bandwidth when some packets re-
lease bandwidth.

Here, we analyze the convergence time when AMRT fills up
the spare bandwidth of bottleneck link. As shown in Fig. 5, the
bottleneck link is saturated by 6 back-to-back packets (i.e. n=6) in
the 1st RTT. We assume that 4 packets are not sent in the 2nd RTT
(i.e. k=4), leaving 4 vacant positions. In our design AMRT, once
the inter-packet gap between the dequeued packet and its previous
dequeued packet is more than the transmission time of one packet,
the switch uses the anti-ECN signal to make the sender to send one
more packet in the next RTT. Thus, when the four vacant positions
are evenly distributed, AMRT needs the minimal time of 2 RTTs to
fill up the spare bandwidth. On the contrary, when the four vacant
positions are consecutive, the maximum time to achieve the full
link utilization is 4 RTTs.

Without loss of generality, when k spare positions are evenly
distributed among n − k packets, we get the minimum time tmin
for AMRT to achieve the full link capacity as

tmin = ⌈
k

n − k
⌉ × RTT , (4)

where RTT is the minimum round trip time.
If k spare positions are consecutive, the maximum time tmax to

fill up the available link bandwidth is

tmax = k × RTT . (5)

In a word, AMRT is able to make full use of the bandwidth
in the time t ∈ [tmin , tmax], while the traditional receiver-driven
transport protocols are not able to fill up the free bandwidth released
by k packets. Next, we use a simple theoretical model to quantify

C

R

Rate

T1 Time

Traditional
Receiver-driven Protocol

AMRT achieves full link utilization

(RTT Rounds)
TR0 T2_maxTi T2_mint'min t'max

Figure 6: AMRT vs. Traditional receiver-driven protocol.

gain of AMRT in link utilization and flow completion time compared
to the traditional receiver-driven protocol.

As shown in Fig. 6, we useC to denote the bottleneck link capac-
ity. We assume that the rate of a flow is reduced fromC to R at time
TR due to network congestion. Since the existing receiver-driven
protocols conservatively trigger new data according to the arrival
rate at the receivers, the released free bandwidth is not utilized.
Therefore, the flow completion time T1 of current receiver-driven
protocols is

T1 =
S −C ×TR

R
+TR , (6)

where S is the flow size.
AMRT adjusts the sending rate based on the anti-ECN marking

at the bottleneck link. As shown in Fig. 6, the two dot lines show
the maximum and minimum gains of AMRT. The earliest time t ′min
for AMRT to increase the rate from R to C is

t ′min = ⌈
C − R

R
⌉ +TR . (7)

The latest time t ′max at which AMRT achieves the full rate C is

t ′max = C − R +TR . (8)

After time t ′ (t ′ ∈ [t ′min , t
′
max]), AMRT makes full use of the

bottleneck link. Then the flow size S is given by

S = C ×TR +
1
2
× (R +C) × (t ′ −TR) +C × (T2 − t ′), (9)

where T2 is the flow completion time of AMRT. Then, we obtain T2
as

T2 =
S −C ×TR − 1

2 × (R +C) × (t ′ −TR)

C
+ t ′. (10)

As shown in Fig. 6, for t ′min and t ′max , the corresponding values
of T2 are T2_min and T2_max , respectively.

LetUAMRT andUTRP respectively denote the utilization ratios
of AMRT and the traditional receiver-driven protocols at the bot-
tleneck link. Then we quantify the utilization gainUдain as

Uдain =
UAMRT
UTRP

=
T1
T2
=

S−C×TR
R +TR

S−C×TR− 1
2×(R+C)×(t ′−TR)

C + t ′
. (11)

We define Ti as the ideal flow completion time without network
congestion as Ti = S

C . Then we get the gain in flow completion
time FCTдain as

FCTдain =
T1 −Ti
T2 −Ti

=

S−C×TR
R +TR − S

C
S−C×TR− 1

2×(R+C)×(t ′−TR)
C + t ′ − S

C

. (12)

ICPP ’20, August 17–20, 2020, Canada J. Hu et al.

S=15 pkts
S=50 pkts
S=100 pkts

U A
M

RT
/U

TR
P

0

2

4

6

8

R/C
0.2 0.4 0.6 0.8 1.0

(a) Minimum utilization gain

S=15 pkts
S=50 pkts
S=100 pkts

U A
M

RT
/U

TR
P

0

2

4

6

8

R/C
0.2 0.4 0.6 0.8 1.0

(b) Maximum utilization gain

S=15 pkts
S=50 pkts
S=100 pkts

(T
1-

T i
)/

(T
2-

T i
)

0

5

10

15

20

25

TR/Ti

0.2 0.4 0.6 0.8 1.0

(c) Minimum FCT gain

S=15 pkts
S=50 pkts
S=100 pkts

(T
1-

T i
)/

(T
2-

T i
)

0

5

10

15

20

25

TR/Ti

0.2 0.4 0.6 0.8 1.0

(d) Maximum FCT gain

Figure 7: Minimum and Maximum utilization gain and FCT
gain with increasing R

C and TR
Ti .

By substituting t ′max and t ′min into Equation (11) and Equation
(12), we can obtain the minimum and maximum gains of link uti-
lization and FCT of AMRT as shown in Fig. 7. We set the capacity of
bottleneck linkC to 1Gbps, the round trip time to 100µs and the rate
reduction time TR to 0. The results in Fig. 7 illustrate that AMRT
significantly outperforms the traditional receiver-driven transport
protocols even if it converges to the full rate with the largest time
tmax . Specifically, Fig. 7 (a) and (b) show that as the ratio of R

C
decreases, the utilization gain for AMRT increases considerably.
Moreover, AMRT performs better with larger flow size. Fig. 7 (c)
and (d) demonstrate that the FCT gain of AMRT increases with the
decreasing value of TRTi and with the increasing flow size S since
AMRT fills up more spare bandwidth to improve link utilization.

6 IMPLEMENTATION
We implement AMRT with three key considerations. The first one
is how AMRTworks well in many-to-many communication pattern,
which may cause low link utilization due to unresponsive senders.
In this scenario, a sender establishes connections with multiple
receivers, while other senders also establish connections with these
receivers at the same time.

For pHost, a receiver assigns tokens to one sender by using
the shortest remaining processing time first (SRPT) policy. If the
receiver does not receive a certain number of packets from the
sender in succession, the receiver assigns tokens to other senders
and stops sending tokens to the unresponsive sender for a short
timeout period (default being 3×RTT [8]). This process potentially
results in poor network utilization.

Homa uses the overcommitment mechanism to allow a receiver
grants simultaneously to a few senders and each of sender is able
to send a bandwidth-delay product (BDP) bytes [7]. However, the
overcommitment mechanism easily leads to queue buildup when
the senders simultaneously start transmissions.

In AMRT, even if some senders do not respond, the other senders
leverage the explicit utilization feedback to increase sending rates

to utilize the spare bandwidth without queueing buildup. The cor-
responding experiment results in Section 8.2 show that AMRT
outperforms the other protocols in many-to-many communication
scenarios.

The second consideration is how AMRT handles packet drops.
In our design, the receivers are responsible for detecting the packet
loss. Similar to Homa, AMRT employs a timeout-based mechanism
to detect lost packets without traffic overhead. Specifically, when
the data packet corresponding to a grant packet has not arrived at
the receiver within a time period (1×RTT by default), the receiver
reissues a grant packet for the lost packet to ask the sender to
retransmit the data packet.

The last key point is how to ensure ultra-low latency when a
new flow starts transmission. In order to avoid wasting bandwidth,
the existing receiver-driven transport protocols start a new flow
immediately without waiting for grants from the receiver. However,
the blindly transmission for a new flow is hard to guarantee the
ultra-low queueing delay especially under the high concurrency
situations [11]. In our design, similar to NDP [10], the queue length
at switch buffer is limited to a very small threshold (i.e., 8 packet
[9],[10]). AMRT directly drops the packets beyond this threshold
to maintain ultra-low latency.

7 TESTBED EVALUATION
In this section, we use a real testbed to evaluate the feasibility and
effectiveness of AMRT. The testbed consists of 13 servers, each of
which has a Intel Core Xeon(R) 3.00 GHz CPU and 32GB memory.
The servers run CentOS 7.5 with Linux 3.10.0-862.el7.x86_64 kernel
and are equipped with Intel Corporation 82580 Gigabit Ethernet
Network Interface Cards (NICs). Eight servers are connected to
five servers acting as switches, each of which has 1GbE quad-ports
I350-T4 NICs.

Spine Switch

f1

f2

f3

Servers
f4

Leaf

Switches

Figure 8: Testbed topology for dynamic traffic scenario.

We firstly test whether AMRT successfully grabs the spare band-
width under the dynamic traffic scenario. We create the test topol-
ogy shown in Fig. 8. Flow f1 and f2 sharing a single bottleneck
link are sent to two receivers, respectively. Similarly, flow f3 and f4
share another bottleneck link. We show the normalized throughput
to the bottleneck link bandwidth in Fig. 9.

We run a test with four flows initiated at the same time. At the
beginning, f1 and f2, f3 and f4 fairly share the two bottleneck links,
respectively. Fig. 9 (a) shows the normalized throughputs of f2 and
f4. When the background flow f1 is finished at about 5ms, f2 adds
new packets to fully use the spare bandwidth within about 2ms.
For the same reason, from about 13ms to 15ms, the added packets
driven by the marked grant packets in f4 approximately take a half
bandwidth of the bottleneck link released by the completed flow

AMRT: Anti-ECN Marking to Improve Utilization of Receiver-driven Transmission in Data Center ICPP ’20, August 17–20, 2020, Canada

f3. We show the normalized throughput of four flows in Fig. 9 (b).
The results illustrate that the bottleneck links are fully utilized by
AMRT under the dynamic traffic scenario.

add pkt (f2)
data (f2)

add pkt (f4)
data (f4)

N
or

m
al

iz
ed

 th
r.

pu
t

0
0.2
0.4
0.6
0.8
1.0
1.2

Time (ms)
0 2 4 6 8 10 12 14 16 18 20

(a) Added packets in AMRT

bg f1
f2

bg f3
f4

N
or

m
al

iz
ed

 th
r.

pu
t

0
0.2
0.4
0.6
0.8
1.0
1.2

Time (ms)
0 2 4 6 8 10 12 14 16 18 20

(b) Normalized throughput

Figure 9: Throughput of AMRT under dynamic traffic sce-
nario.

Next, we compare AMRT with the state-of-the-art receiver-
driven transport protocols in a multi-bottleneck scenario. We run a
test with four receiver-driven flows in the leaf-spine topology as
shown in Fig. 10. Flow f1 experiences two bottlenecks, which are
shared with f2 and f3, respectively. In addition, f3 and f4 share a
single bottleneck link.

Spine Switch

f1

f2

f3

Servers
f4

Leaf

Switches

Figure 10: Testbed topology for multi-bottleneck scenario.

Fig. 11 shows the normalized throughput of pHost, Homa, NDP
and AMRT over time. At the beginning, f1 and f2 fairly share
the bottleneck link. Fig. 11 (a) and (b) show that, when a new
flow f3 with the same destination as f1 starts at 1.0s, f3 gets full
link capacity in pHost and Homa due to the shortest remaining
processing time (SRPT) policy. In Fig. 11 (c) and (d), since f3 starts
transmission with the link rate, f1 and f3 share the bottleneck link
with a rate ratio of about 1:2 after flow competition.

Therefore, after f3 starts, f1 releases bandwidth at the first bottle-
neck link under the four receiver-driven schemes. In pHost, Homa
and NDP, the spare bandwidth released by f1 at the first bottleneck
link is wasted. The reason is that, even if the sending rate of f1
drops, the receiver-driven flow f2 still triggers new data packet
according to the arrival rate of data packet at its receiver. The f2
sender can not get more grants to increase sending rate to utilize
the spare bandwidth released by f1. Only AMRT is able to flexibly
grab the spare bandwidth by the anti-ECN marking feedback mech-
anism. Specifically, between 1.0s and 3.1s, f2 in AMRT increases
the normalized throughput from 50% to around 66% compared with
the other protocols.

Fig. 11 (a) and (b) show that, after f3 finishes at 3.1s, due to the
conservativeness of pHost and Homa, f4 is not able to get more
grants to trigger more data packets and utilize the free bandwidth

released by f3. In Fig. 11 (c), since NDP cuts payloads of the pack-
ets when the queue length exceeds a given threshold instead of
dropping packets, the sending rates of f4 is recovered to the bottle-
neck link capacity. Fig. 11 (d) shows that f4 in AMRT also achieves
full bottleneck bandwidth by increasing sending rate based on the
anti-marking feedback mechanism.

f1
f2

f3
f4

N
or

m
al

iz
ed

 th
r.

pu
t

0
0.2
0.4
0.6
0.8
1.0
1.2

Time (s)
0 1 2 3 4 5 6 7

(a) pHost

f1
f2

f3
f4

N
or

m
al

iz
ed

 th
r.

pu
t

0
0.2
0.4
0.6
0.8
1.0
1.2

Time (s)
0 1 2 3 4 5 6 7

(b) Homa

f1
f2

f3
f4

N
or

m
al

iz
ed

 th
r.

pu
t

0
0.2
0.4
0.6
0.8
1.0
1.2

Time (s)
0 1 2 3 4 5 6 7

(c) NDP

f1
f2

f3
f4

N
or

m
al

iz
ed

 th
r.

pu
t

0
0.2
0.4
0.6
0.8
1.0
1.2

Time (s)
0 1 2 3 4 5 6 7

(d) AMRT

Figure 11: Throughput of four receiver-driven transmission
schemes under multi-bottleneck scenario.

Similarly, after f1 finishes transmission, the rate of f2 achieves
the link capacity only in NDP and AMRT. Compared with pHost
and Homa, NDP achieves about 26.6% and 20% reduction at FCT for
f2 and f4, respectively. For AMRT, the rapid reaction to the under-
utilization greatly improves the network efficiency. For example,
AMRT reduces the FCT of flow f2 by ∼36%, ∼36% and ∼12.7% over
pHost, Homa and NDP, respectively. These results indicate that
AMRT is able to fully utilize the spare bandwidth in the multi-
bottleneck scenario to speed up flow transmission.

In addition, Fig. 11 (a) shows that f1 stops transmission until f3
finished as pHost adopts the SRPT policy. In Fig. 11 (b), when the
rate of f3 drops to half of the bottleneck bandwidth at the beginning
of f4, f1 gets 50% of the link capacity due to overcommitment mech-
anism in Homa. Therefore, Homa reduces the FCT of flow f1 by
17.5% compared with pHost. However, because the free bandwidths
released by f1 and f3 are not utilized by f2 and f4, respectively, the
link utilization is still lower than AMRT.

In summary, the test results of testbed experiments show that
AMRT generally outperforms pHost, Homa and NDP. With anti-
ECN marking method and explicit feedback to adjust sending rate,
AMRT significantly achieves higher throughput and reduces the
flow completion time.

8 SIMULATION EVALUATION
In this section, we firstly compare AMRT performance against the
state-of-the-art receiver-driven transport protocols over a wide
range of realistic datacenter workloads in the large-scale scenarios.

ICPP ’20, August 17–20, 2020, Canada J. Hu et al.

Then we test AMRT performance in many-to-many communication
and Incast scenarios.

8.1 Performance under realistic workloads
We perform NS2 simulations to evaluate AMRT performance on a
large-scale network topology with varying workloads under the
typical datacenter scenarios. We measure the flow completion time
(FCT), 99th percentile FCT and link utilization of AMRT, pHost,
Homa and NDP.

NetworkTopology:Weuse a common leaf-spine topologywith
10 top-of-rack (ToR) switches, 8 core switches and 400 end-hosts.
Each leaf switch connects to 40 hosts with 10Gbps links. Each
network link has a propagation delay of 100µs. The switch buffer
size is set to128 packets. We employ Equal Cost Multi Path (ECMP)
mechanism to support multipath routing.

Traffic workloads: We use five workloads with the same dis-
tributions as the realistic ones, including web server (WSv), cache
follower (CF), hadoop cluster (HC), web search (WSc) and data
mining (DM) [7], [8], [9], which cover a wide range of average
flow sizes ranging from 64KB to 7.41MB and more than half of the
flows are less than 10KB. Specifically, in web server application,
except for tiny flows smaller than 10KB, the size of the other flows
is uniformly distributed from 10KB to 1MB, resulting in the smallest
average flow size. While in the other four workloads, the flow size
distributions are heavy-tailed with about more than 90% bytes con-
tributed by the small fraction of large flows. We generate the traffic
between randomly selected source and destination hosts. The flow
arrival follows a Poisson process and the traffic load is changed
from 0.1 to 0.7.

Fig. 12 shows the flow completion time of all flows with varying
load from 0.1 to 0.7. The bottom and upper bar indicate the aver-
age and 99th percentile FCT, respectively. AMRT performs better
than the other protocols across all workloads, because it is able
to timely grab the spare bandwidth through anti-ECN marking
feedback. Among the five workloads, AMRT obtains the largest
gain in data mining scenario. The reason is that more large flows
experience multiple bottlenecks and are affected by dynamic traffic,
potentially resulting in more opportunities for AMRT to fill up
the spare bandwidth. Specifically, in data mining, AMRT reduces
the AFCT and 99th percentile FCT by ∼40.8%, ∼26.4%, ∼18.3% and
∼43.6%, ∼32.5%, ∼21.5% at 0.7 load over pHost, Homa and NDP,
respectively. Moreover, as the load increases, the higher network
dynamic provides more chances for AMRT to seize the spare band-
width. For example, when the web search load increases from 0.1
to 0.7, AMRT improves the average FCT from 31% to 49% , and the
99th percentile FCT from 38% to 56% compared to pHost.

We also measure the bottleneck link utilization with increasing
number of flows. As shown in Fig. 13, AMRT significantly out-
performs the other receiver-driven mechanisms, because AMRT
increases sending rates once detecting the spare bandwidth and
thus achieves high rate close to the link capacity in a bounded time
period. Specifically, AMRT improves link utilization by ∼36.8%,
∼22.5%, ∼11.6% in data mining workload with 800 flows over pHost,
Homa and NDP, respectively. NDP also obtains high link utilization
because in addition to pacing pull packets at the link rate of receiver
side, it trims payloads for the packets when queue length becomes

pHost-Avg
pHost-99th

Homa-Avg
Homa-99th

NDP-Avg
NDP-99th

AMRT-Avg
AMRT-99th

FC
T

(m
s)

1

101

102

103

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Web Server

pHost-Avg
pHost-99th

Homa-Avg
Homa-99th

NDP-Avg
NDP-99th

AMRT-Avg
AMRT-99th

FC
T

(m
s)

1

101

102

103

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) Cache Follower

pHost-Avg
pHost-99th

Homa-Avg
Homa-99th

NDP-Avg
NDP-99th

AMRT-Avg
AMRT-99th

FC
T

(m
s)

1

101

102

103

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) Hadoop Cluster

pHost-Avg
pHost-99th

Homa-Avg
Homa-99th

NDP-Avg
NDP-99th

AMRT-Avg
AMRT-99th

FC
T

(m
s)

1

101

102

103

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(d) Web Search

pHost-Avg
pHost-99th

Homa-Avg
Homa-99th

NDP-Avg
NDP-99th

AMRT-Avg
AMRT-99th

FC
T

(m
s)

1

101

102

103

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(e) Data Mining

Figure 12: The average FCT and 99th percentile FCT of all
flows for four different receiver-driven transport protocols
with increasing load under five realistic workloads.

large and retransmits them to recover the sending rate after the
congestion is alleviated. Compared with pHost, Homa performs

AMRT: Anti-ECN Marking to Improve Utilization of Receiver-driven Transmission in Data Center ICPP ’20, August 17–20, 2020, Canada

pHost Homa NDP AMRT
CF CF CF CF CFW

Sv

W
Sv

W
Sv

W
Sv

W
Sv

H
C

H
C

H
C

H
C

H
C

W
Sc

W
Sc

W
Sc

W
Sc

D
M

D
M

D
M

D
M

D
M

W
Sc

Ut
ili

za
tio

n
(%

)

40

50

60

70

80

90

100

The number of flows
400 500 600 700 800

Figure 13: The bottleneck utilizations of four different
receiver-driven transport protocols with varying number of
flows under five realistic workloads. Specifically, WSv, CF,
HC, WSc and DM stand for Web Server, Cache Follower,
Hadoop Cluster, Web Search and Data Mining, respectively.

better because it uses the overcommitment mechanism to improve
link utilization for the scenario that the senders do not respond to
the receivers. However, these protocols are hard to make good use
of the free bandwidth in the multi-bottleneck or dynamic traffic
scenarios.

8.2 Performance in Many-to-many
Communications

In many-to-many communication scenario, a source usually es-
tablishes multiple connections with multiple destinations at the
same time. Similarly, a destination usually connects with multiple
sources. If a receiver only sends grants to one sender at a time, like
pHost, the bottleneck link bandwidth will be wasted with unre-
sponsive senders, resulting in poor network utilization especially
under highly dynamic traffic scenario. To address under-utilization
problem in this case, Homa employs the overcommitment mech-
anism to allow a receiver grants multiple senders simultaneously
(i.e., degree of overcommitment). Consequently, even though some
senders are not able to respond immediately to the grants, the link
bandwidth is also effectively utilized by other active senders.

In this section, we generate many-to-many communication pat-
tern in a leaf-spine topology with 3 leaf switches to compare AMRT
with Homa’s overcommitment mechanism. Each of the first two leaf
switches connects with 20 senders, and each sender respectively es-
tablishes 2 connections with 2 receivers under the third leaf switch.
The other simulation settings are same as that in Section 8.1. We
measure the bottleneck link utilization and maximum queue length
with increasing responsive ratio of the senders from 0.1 to 1. In
this test, we change the degree of overcommitment in Homa from
2 to 8. In AMRT, each receiver sends grants to the corresponding
sender according to the received data packets. We repeated the test
50 times to get the average results.

Fig. 14 shows the bottleneck link utilization and maximum queue
lengthwith varying responsive ratios of senders. As shown in Fig. 14
(a), compared with Homa, AMRT keeps higher link utilization since
it flexibly adjusts the sending rate according to the network state.
The key difference is that AMRT only increases the sending rate
to match the target rate when the bottleneck link is under-utilized.
On the contrary, Homa increases the degree of overcommitment to

reduce the likelihood of wasted bandwidth at the cost of consuming
more buffer space, causing larger queueing delay. As shown in Fig.
14 (b), when the response ratio of senders is 0.5 and the degree of
overcommitment is set to 8, the average link utilization in Homa is
improved almost by 32% compared with degree of 2, but the average
queue length also increases by about 4 times.

Homa (degree=2)
Homa (degree=4)
Homa (degree=6)

Homa (degree=8)
AMRT

Ut
ili

za
tio

n
(%

)

0
20
40
60
80

100
120

Responsive ratio of senders
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) Bottleneck utilization

Homa (degree=2)
Homa (degree=4)
Homa (degree=6)

Homa (degree=8)
AMRT

Q
ue

ue
 le

ng
th

 (p
kt

)

0

50

100

150

200

Responsive ratio of senders
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) Maximum queue length

Figure 14: The bottleneck link utilization and the queueing
buildups with increasing ratio of responsive senders.

In brief, it is hard for Homa to achieve high link utilization
and low queueing delay simultaneously by using a fixed degree
of overcommitment under highly dynamic traffic scenario. AMRT
provides high link utilization by reasonably adjusting the send-
ing rate according to the anti-ECN feedback from the bottleneck
link and guarantees low latency via conservative receiver-driven
transmission.

9 RELATEDWORKS
In recent years, a variety of transport designs are proposed to obtain
low latency or high throughput in data centers. In this section, we
compare our design AMRT with the sender-based, rate allocation,
explicit flow control and receiver-driven mechanisms.

DCTCP [1] makes use of the ECN marking ratio to adjust the
congestion window to ensure low queueing delay and high through-
put. D2TCP [2] and D3 [26] adjust transmission rate for deadline-
sensitive flows to maximize the deadline-meeting rate. HULL [27]
maintains near-zero buffer occupancy by using phantom queues to
provide low flow completion time. To avoid packet losses, DCQCN
[4] uses a fine-grained and end-to-end congestion control scheme
to adjust sending rate. TIMELY [5] leverages the changes in RTT
as a congestion signal to reduce queuing delay. Compared with the
traditional TCP, these protocols achieve a good balance between
low delay and high throughput. However, they may still suffer from
buffer overflow under highly concurrent flows.

Several proposals use rate control techniques to achieve the tar-
get rate quickly. PDQ [28] calculates flow rate to implement preemp-
tive flow scheduling to minimize flow completion time. pFabric [3]

ICPP ’20, August 17–20, 2020, Canada J. Hu et al.

decouples flow scheduling from rate control and schedules packets
based on the strict priorities at switches. Fastpass [29] uses a central-
ized controller to determine the scheduling time and transmission
path for each packet. Karuna [30] focuses on how to schedule a mix
of flows with and without deadline to achieve performance benefits
for all types of traffic. TFC [20] explicitly allocates tokens to active
flows to achieve near-zero queue occupancy. By shaping the flow
of credit packets at the switch, ExpressPass [9] effectively controls
congestion even before sending data. However, these rate control
schemes require the rate calculation and global scheduling, which
potentially incur delay overhead and performance degradation es-
pecially for short and tiny flows.

Lots of transport protocols accurately adjust the sending rate
to match the bottleneck link capacity by using explicit feedback
information from switches. XCP [24] uses explicit and precise con-
gestion feedback from the switches with multiple bits to regulate
congestion window. VCP [31] leverages two ECN bits to carry net-
work congestion information to dynamically adjust the congestion
window. Recently, HPCC [16] leverages in-network telemetry (INT)
technique to obtain precise link load information at the switches
and then sends the load information back to the sender to control
traffic precisely. However, it is hard for these transport protocols
to make a tradeoff between low feedback overhead and accurate
rate adjustment.

Recent receiver-driven transport protocols are proposed to en-
hance network performance in terms of ultra-low queueing delay
and near-zero packet loss in data centers. pHost [8] performs dis-
tributed per-packet scheduling at the end hosts to optimize flow
performance. NDP [10] starts flows at full rate, cuts payloads for
the packets exceeding the given queue length threshold and uses
a receiver-pulled mechanism to control incoming traffic. Homa
[7] uses a receiver-driven flow control mechanism and in-network
priority queues to provide good performance especially for short
messages. Aeolus [11] assigns a higher drop priority for aggres-
sive unscheduled packets to maintain lossless for scheduled packets.
Through the proactive congestion control mechanism, these conser-
vative transport protocols guarantee the bounded queueing delay.
However, they still potentially suffer from low link utilization under
multi-bottleneck and high dynamic traffic scenarios.

In contrast with the above transport mechanisms, our solution
AMRT works through a different perspective: AMRT uses anti-
ECN marking to notify senders to increase sending rate to make
a sufficient use of free bandwidth, thus achieving better transport
performance in terms of low latency and high link utilization si-
multaneously without any traffic overhead.

10 CONCLUSION
We propose a new receiver-driven transport protocol AMRT that
uses anti-ECN marking feedback to indicate under-utilized link and
notifies the sender to fill up the spare bandwidth without introduc-
ing traffic overhead. The test results of real testbed and large-scale
NS2 simulations show that AMRT significantly outperforms pHost,
Homa and NDP by 36.8%, 22.5% and 11.6% respectively in terms of
link utilization. In addition, AMRT effectively reduces the average
flow completion time by up to 40.8% compared with the state-of-
the-art receiver-driven transport protocols.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Founda-
tion of China (61872387, 61572530, 61872403), CERNET Innovation
Project (Grant No. NGII20170107), Project of Foreign Cultural and
Educational Expert (G20190018003).

REFERENCES
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, et al. Data center TCP (DCTCP). In Proc.

ACM SIGCOMM, 2010.
[2] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter TCP

(D2TCP). In Proc. ACM SIGCOMM, 2012.
[3] M. Alizadeh, S. Yang,M. Sharif, S. Katti, N.McKeown, B. Prabhakar, and S. Shenker.

pFabric: Minimal near-optimal datacenter transport. In Proc. ACM SIGCOMM,
2013.

[4] Y. Zhu, H. Eran, D. Firestone, et al. Congestion control for large-scale RDMA
deployments. In Proc. ACM SIGCOMM, 2015.

[5] R. Mittal, V. T. Lam, N. Dukkipati, et al. Timely: Rtt-based congestion control for
the datacenter. In Proc. ACM SIGCOMM, 2015.

[6] A. Rucker, T. Swamy, M. Shahbaz, K. Olukotun. Elastic RSS: Co-Scheduling
Packets and Cores Using Programmable NICs. In Proc. ACM APNet, 2019.

[7] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In Proc. ACM SIGCOMM,
2018.

[8] P. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker. phost:
Distributed near-optimal datacenter transport over commodity network fabric.
In Proc. ACM CoNEXT 2015.

[9] I. Cho, K. Jang, and D. Han. Credit-scheduled delay-bounded congestion control
for datacenters. In Proc. ACM SIGCOMM, 2017.

[10] M. Handley, C. Raiciu, A. Agache, A.Voinescu, A. Moore, G. Antichi, and M.
Wójcik. Re-architecting datacenter networks and stacks for low latency and high
performance. In Proc. ACM SIGCOMM, 2017.

[11] S. Hu, W. Bai, B. Qiao, K. Chen, and K. Tan. Augmenting Proactive Congestion
Control with Aeolus. In Proc. ACM APNet 2018.

[12] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken. The nature of data
center traffic: measurements & analysis. In Proc. ACM IMC, 2009.

[13] T. Benson, A. Akella, and D. Maltz. Network traffic characteristics of data centers
in the wild. In Proc. IMC, 2010.

[14] A. Roy, H. Zeng, J. Bagga, G. Porter, A. C. Snoeren. Inside the Social Network’s
(Datacenter) Network. In Proc. ACM SIGCOMM, 2015.

[15] J. Xia, G. Zeng, J. Zhang, et al. Rethinking Transport Layer Design for Distributed
Machine Learning. In Proc. ACM APNet 2019.

[16] Y. Li, R. Miao, H. H. Liu, et al. HPCC: high precision congestion control. In Proc.
ACM SIGCOMM, 2019.

[17] H. Zhu, D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and M. Erez. Kelp: QoS
for Accelerators in Machine Learning Platforms. In Proc. IEEE HPCA, 2019.

[18] A. Eker, B. Williams, K. Chiu, and D. Ponomarev. Controlled asynchronous GVT:
accelerating parallel discrete event simulation on many-core clusters. In Proc.
ACM ICPP, 2019.

[19] P. Cheng, F. Ren, R. Shu, and C. Lin. Catch the whole lot in an action: Rapid
precise packet loss notification in data centers. In Proc. USENIX NSDI, 2014.

[20] J. Zhang, F. Ren, R. Shu, and P. Cheng. TFC: token flow control in data center
networks. In Proc. ACM EuroSys, 2016.

[21] T. Wang, F. Liu, J. Guo, and H. Xu. Dynamic SDN controller assignment in data
center networks: Stable matching with transfers. In Proc. IEEE INFOCOM, 2016.

[22] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren. Re-architecting Congestion
Management in Lossless Ethernet. In Proc. USENIX NSDI, 2020.

[23] X. Wang, A. Tumeo, J. D. Leidel, J. Li, and Y. Chen. MAC: Memory Access Coa-
lescer for 3D-Stacked Memory. In Proc. ACM ICPP, 2019.

[24] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control for high
bandwidth-delay product networks. In Proc. ACM SIGCOMM, 2002.

[25] S. S. Kunniyur. AntiECN Marking: A Marking Scheme for High Bandwidth Delay
Connections. In Proc. IEEE ICC, 2003.

[26] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late:
Meeting deadlines in datacenter networks. In Proc. ACM SIGCOMM, 2011.

[27] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less
is more: trading a little bandwidth for ultra-low latency in the data center. In
Proc. USENIX NSDI, 2012.

[28] C. Y. Hong,M. Caesar, and P. B. Godfrey. Finishing FlowsQuicklywith Preemptive
Scheduling. In Proc. ACM SIGCOMM, 2012.

[29] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: A
centralized "zero-queue" datacenter network. In Proc. ACM SIGCOMM, 2014.

[30] L. Chen, K. Chen, W. Bai, and M. Alizadeh. Scheduling Mix-flows in Commodity
Datacenters with Karuna. In Proc. ACM SIGCOMM, 2016.

[31] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One More Bit Is Enough.
In Proc. ACM SIGCOMM, 2005.

	Abstract
	1 Introduction
	2 Design Motivation
	2.1 Multiple bottlenecks scenario
	2.2 Dynamic traffic scenario
	2.3 Summary

	3 Design Overview
	4 Design Details
	4.1 Packet Interval Estimation and Anti-ECN Marking
	4.2 Grant Generation and Explicit Feedback
	4.3 Receiver-driven Rate Adjustment

	5 Model Analysis
	6 Implementation
	7 Testbed Evaluation
	8 Simulation Evaluation
	8.1 Performance under realistic workloads
	8.2 Performance in Many-to-many Communications

	9 Related Works
	10 Conclusion
	Acknowledgments
	References

